

# VOLUME II - USOS MÚLTIPLOS DA ÁGUA

# AVALIAÇÃO INTEGRADA DA BACIA HIDROGRÁFICA DO RIO CANOAS

Florianópolis Santa Catarina



Belo Horizonte Minas Gerais



# Azurit Engenharia Ltda. Av. Carandaí, n° 288, 2º andar, Funcionários Belo Horizonte/MG

Tel.: (31) 3227-5722 www.azurit.com.br



# AVALIAÇÃO INTEGRADA DA BACIA HIDROGRÁFICA DO RIO CANOAS

## **VOLUME II - USOS MÚLTIPLOS DA ÁGUA**

#### **DEZEMBRO DE 2021**

Elaborado para:
Statkraft Energias Renováveis S.A.
Florianópolis - SC

Elaborado por:
Azurit Engenharia Ltda.
Belo Horizonte - MG





# **SUMÁRIO**

| 1 | INTRODUÇ   | ÃO                                              | 12 |
|---|------------|-------------------------------------------------|----|
| 2 | ASPECTOS   | S METODOLÓGICOS                                 | 12 |
| 3 | DIAGNÓST   | ICO DOS USOS MÚLTIPLOS DA ÁGUA                  | 16 |
|   | 3.1 Usos C | consuntivos                                     | 16 |
|   | 3.1.1 Ab   | astecimento Humano                              | 18 |
|   | 3.1.1.1    | Abastecimento Rural                             | 18 |
|   | 3.1.1.2    | Abastecimento Urbano                            | 20 |
|   | 3.1.1.3    | Cadastro e Outorgas de Uso de Recursos Hídricos | 24 |
|   | 3.1.1.3    | .1 Demanda Superficial                          | 27 |
|   | 3.1.1.3    | .2 Demanda Subterrânea                          | 28 |
|   | 3.1.2 Irri | gaçãogação                                      | 29 |
|   | 3.1.2.1    | Área Irrigada                                   | 30 |
|   | 3.1.2.2    | Área Plantada                                   | 34 |
|   | 3.1.2.3    | Área Irrigada x Área Plantada                   | 37 |
|   | 3.1.2.4    | Áreas Irrigáveis                                | 37 |
|   | 3.1.2.5    | Cadastro e Outorgas de Uso de Recursos Hídricos | 38 |
|   | 3.1.2.5    | .1 Demanda Superficial                          | 40 |
|   | 3.1.2.5    | .2 Demanda Subterrânea                          | 41 |
|   | 3.1.3 Us   | o Industrial                                    | 42 |
|   | 3.1.3.1    | Cadastro e Outorgas de Uso de Recursos Hídricos | 43 |
|   | 3.1.3.1    | .1 Demanda Superficial                          | 46 |
|   | 3.1.3.1    | .2 Demanda Subterrânea                          | 47 |
|   | 3.1.4 Cri  | iação de Animais                                | 48 |
|   | 3.1.4.1    | Cadastro e Outorgas de Uso de Recursos Hídricos | 50 |
|   | 3.1.4.1.   | .1 Demanda Superficial                          | 52 |
|   | 3.1.4.1.   | .2 Demanda Subterrânea                          | 53 |
|   | 3.2 Usos N | ão Consuntivos                                  | 54 |





|   | 3.2.1     | Geração de Energia e Regularização de Vazoes  | 54 |
|---|-----------|-----------------------------------------------|----|
|   | 3.2.2     | Lançamento de Efluentes                       | 56 |
|   | 3.2.3     | Recreação, Lazer e Pesca                      | 57 |
|   | 3.2.4     | Navegação                                     | 59 |
| 4 | ESTIMA    | ATIVA DAS SÉRIE DE VAZÕES DE USOS CONSUNTIVOS | 59 |
|   | 4.1 Aba   | astecimento Urbano                            | 60 |
|   | 4.1.1     | Resultados                                    | 63 |
|   | 4.2 Aba   | astecimento Rural                             | 64 |
|   | 4.2.1     | Resultados                                    | 65 |
|   | 4.3 Cria  | ação Animal                                   | 66 |
|   | 4.3.1     | Resultados                                    | 68 |
|   | 4.4 Irrig | gaçãogação                                    | 71 |
|   | 4.4.1     | Resultados                                    | 72 |
|   | 4.5 Uso   | o Industrial                                  | 73 |
|   | 4.5.1     | Resultados                                    | 79 |
| 5 | CENÁR     | IOS DE USOS DA ÁGUA                           | 82 |
|   | 5.1 Uso   | os Consuntivos                                | 82 |
|   | 5.1.1     | Abastecimento Urbano                          | 82 |
|   | 5.1.2     | Abastecimento Rural                           | 83 |
|   | 5.1.3     | Criação Animal                                | 84 |
|   | 5.1.4     | Irrigação                                     | 89 |
|   | 5.1.5     | Uso Industrial                                | 90 |
|   | 5.1.6     | Resultados                                    | 91 |
|   | 5.2 Uso   | os Não Consuntivos                            | 94 |
|   | 5.2.1     | Geração de Energia e Regularização de Vazões  | 94 |
|   | 5.2.2     | Lançamento de Efluentes                       | 94 |
|   | 5.2.3     | Recreação, Lazer e Pesca                      | 94 |
|   | 5.2.4     | Navegação                                     | 95 |





| 6  | MO    | MODELAGEM DE PROPAGAÇÃO DE CHEIAS e QUALIDADE DA ÁGUA9 |     |  |  |  |  |
|----|-------|--------------------------------------------------------|-----|--|--|--|--|
|    | 6.1   | Modelo de Propagação de Cheias                         | 95  |  |  |  |  |
|    | 6.2   | Modelo de Qualidade da Água                            | 96  |  |  |  |  |
|    | 6.3   | Conclusão                                              | 96  |  |  |  |  |
| 7  | DIS   | PONIBILIDADE HÍDRICA                                   | 96  |  |  |  |  |
| 8  | BAI   | LANÇO HÍDRICO SUPERFICIAL                              | 102 |  |  |  |  |
|    | 8.1   | Resultados e Análises                                  | 104 |  |  |  |  |
| 9  | CO    | NFLITOS POR USO DA ÁGUA                                | 105 |  |  |  |  |
| 10 | ) F   | REFERÊNCIAS BIBLIOGRÁFICAS                             | 107 |  |  |  |  |
| 11 | Δ     | NEXOS                                                  | 112 |  |  |  |  |
|    | Anex  | o 1 – E-mail SDE                                       | 113 |  |  |  |  |
|    | Anexo | o 2 – Modelagem                                        | 117 |  |  |  |  |





## **LISTA DE TABELAS**

| Tabela 3.1 - População atendida pelos serviços de abastecimento de água                                                                                       | .21 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Tabela 3.2 - Captação e consumo de água para os municípios estudados                                                                                          | 22  |
| Tabela 3.3 - Mananciais destinados ao abastecimento dos municípios avaliados                                                                                  | 23  |
| Tabela 3.4 - Volume de água captada e tratada pelas prestadoras de serviços de água esgoto dos municípios envolvidos                                          |     |
| Tabela 3.5 - Registros para abastecimento público na área de estudo                                                                                           | 25  |
| Tabela 3.6 - Demanda hídrica para abastecimento público por município                                                                                         | 27  |
| Tabela 3.7 - Demanda hídrica superficial para abastecimento público por município                                                                             | 28  |
| Tabela 3.8 - Demandas hídricas subterrâneas para abastecimento público por município                                                                          | 29  |
| Tabela 3.9 - Área irrigada e métodos de irrigação, de acordo com o Censo Agropecuário 2006, para os municípios estudados da bacia hidrográfica do rio Canoas  |     |
| Tabela 3.10 - Área irrigada e métodos de irrigação, de acordo com o Censo Agropecuário 2017, para os municípios estudados da bacia hidrográfica do rio Canoas |     |
| Tabela 3.11 - Área ocupada pelas lavouras permanentes nos municípios estudados dentro bacia hidrográfica do rio Canoas.                                       |     |
| Tabela 3.12 - Área ocupada pelas lavouras temporárias nos municípios estudados dentro bacia hidrográfica do rio Canoas.                                       |     |
| Tabela 3.13 - Áreas irrigáveis nos municípios avaliados                                                                                                       | 38  |
| Tabela 3.14 - Maiores demandas para irrigação registradas na área de estudo                                                                                   | 39  |
| Tabela 3.15 - Demanda hídrica para irrigação por município                                                                                                    | 40  |
| Tabela 3.16 - Demanda hídrica superficial para irrigação por município                                                                                        | 41  |
| Tabela 3.17 - Demandas hídricas subterrâneas para irrigação por município                                                                                     | 42  |
| Tabela 3.18 - Usos para uso industrial registrados na área de estudo                                                                                          | 44  |
| Tabela 3.19 - Demanda hídrica para uso industrial por município                                                                                               | 46  |
| Tabela 3.20 - Demandas hídricas superficiais para uso industrial por município                                                                                | 47  |
| Tabela 3.21 - Demandas hídricas subterrâneas para uso industrial por município                                                                                | 48  |
| Tabela 3.22 - Número de animais por espécie e por município                                                                                                   | 49  |
| Tabela 3.23 - Maiores demandas para irrigação registradas na área de estudo                                                                                   | 51  |
| Tabela 3.24 - Demanda hídrica para criação animal por município                                                                                               | 52  |
| Tabela 3.25 - Demandas hídricas superficiais para criação animal por município                                                                                | 53  |





| Tabela 3.26 - Demandas hídricas subterrâneas para criação animal por município54                            |
|-------------------------------------------------------------------------------------------------------------|
| Tabela 3.27 - Outorga de regularização de vazão55                                                           |
| Tabela 3.28 - Lançamento de efluentes brutos nos municípios da área de estudo56                             |
| Tabela 3.29 - Lançamentos de efluentes no rio Canoas57                                                      |
| Tabela 4.1 - Consumo per capita adotado para cada município61                                               |
| Tabela 4.2 - Demandas hídricas para abastecimento urbano63                                                  |
| Tabela 4.3 - Demandas hídricas para abastecimento rural65                                                   |
| Tabela 4.4 - Consumo de água <i>per capita</i> por espécie66                                                |
| Tabela 4.5 - Demandas hídricas para criação animal68                                                        |
| Tabela 4.6 - Vazões de captação e consumo específico71                                                      |
| Tabela 4.7 - Demandas hídricas para irrigação72                                                             |
| Tabela 4.8 - Coeficientes de retirada e consumo industrial                                                  |
| Tabela 4.9 - Demandas hídricas para uso industrial79                                                        |
| Tabela 5.1 - Populações urbanas extrapoladas para os anos de 2021, 2022, 2030 e 2040. 83                    |
| Tabela 5.2 - Populações rurais extrapoladas e ajustadas para os anos de 2021, 2022, 2030 e 204082           |
| Tabela 5.3 - Número de rebanhos extrapolados e ajustados para 202185                                        |
| Tabela 5.4 - Número de rebanhos extrapolados e ajustados para 202286                                        |
| Tabela 5.5 - Número de rebanhos extrapolados e ajustados para 203087                                        |
| Tabela 5.6 - Número de rebanhos extrapolados e ajustados para 204088                                        |
| Tabela 5.7 - Áreas irrigadas extrapoladas e ajustadas para os anos de 2021, 2022, 2030 e 204090             |
| Tabela 5.8 - Número de empregados extrapolados do setor industrial para os anos de 2021 2022, 2030 e 204091 |
| Tabela 5.9 - Demandas hídricas para o ano de 202192                                                         |
| Tabela 5.10 - Demandas hídricas para o ano de 202292                                                        |
| Tabela 5.11 - Demandas hídricas para o ano de 203093                                                        |
| Tabela 5.12 - Demandas hídricas para o ano de 204093                                                        |
| Tabela 7.1 - Estações fluviométricas analisadas no Projeto Básico da PCH Canoas97                           |
| Tabela 7.2 - Vazões médias mensais da Estação Vila Canoas (71200000) em m³/s99                              |







| Tabela 7.3 - Vazões médias mensais da Estação Ponte Alta do Sul (71383000) em m³/s. | 100  |
|-------------------------------------------------------------------------------------|------|
| Tabela 7.4 - Vazões médias mensais da Estação Passo Caru (71550000) em m³/s         | .101 |
| Tabela 7.5 - Disponibilidade hídrica na calha principal do rio Canoas               | .102 |
| Tabela 8.1 - Disponibilidade ao longo do rio Canoas                                 | .105 |
| Tabela 8.2 - Demandas, consumos e retornos hídricos na área de estudo               | .105 |
| Tabela 8.3 - Índices de Retirada da Água                                            | .105 |





# **LISTA DE FIGURAS**

| Figura 2.1 - Perfil longitudinal do leito fluvial do rio Canoas                   | 14  |
|-----------------------------------------------------------------------------------|-----|
| Figura 3.1 - Demanda hídrica por finalidade na área de estudo                     | 17  |
| Figura 3.2 - Demanda hídrica superficial por finalidade na área de estudo         | 17  |
| Figura 3.3 - Demanda hídrica subterrânea por finalidade na área de estudo         | 18  |
| Figura 3.4 - Casas de campo identificadas no Alto Canoas, no município de Urubici | 19  |
| Figura 3.5 - Comunidades rurais nas margens do médio curso do rio Canoas          | 20  |
| Figura 3.6 - Unidade da Casan no município de Otacílio Costa                      | 21  |
| Figura 3.7 - Monoculturas presentes na área de estudo                             | 30  |
| Figura 3.8 - Áreas irrigáveis no estado de Santa Catarina                         | 37  |
| Figura 3.9 - Atividades industriais                                               | 43  |
| Figura 3.10 - Registros de criação animal e áreas de pastagem                     | 50  |
| Figura 3.11 - Empreendimentos hidrelétricos no rio Canoas                         | 55  |
| Figura 3.12 - Estruturas destinadas ao turismo ecológico no município de Urubici  | 58  |
| Figura 3.13 - Indícios de pesca no rio Canoas                                     | 58  |
| Figura 3.14 - Balsas localizadas no Médio Canoas                                  | 59  |
| Figura 7.1 - Curvas de permanência mensal das estações selecionadas               | 102 |







## **LISTA DE MAPAS**

| Mapa 1 - Inserção da área de estudo                       | 15 |
|-----------------------------------------------------------|----|
| Mapa 2 - Estações fluviométricas avaliadas e selecionadas | 98 |





#### LISTA DE ABREVIATURAS E SIGLAS

% Porcentagem

ABNT Associação Brasileira de Normas Técnicas

A.i. Área Irrigada

AIBH Avaliação Integrada da Bacia Hidrográfica

ANA Agência Nacional das Águas

Aneel Agência Nacional de Energia Elétrica

Casan Companhia Catarinense de Águas e Saneamento

Celesc Centrais Elétricas de Santa Catarina

Ceurh Cadastro Estadual de Usuários de Recursos Hídricos CNAE Classificação Nacional de Atividades Econômicas Cnarh Cadastro Nacional de Usurários de Recursos Hídricos

Enercan Campos Novos Energia S.A. ETA Estação de Tratamento de Água

etc. Et cetera

FBB Fundação Banco do Brasil FJP Fundação João Pinheiro FUNARBE Fundação Arthur Bernardes

GW Gigawatt ha Hectare

IBGE Instituto Brasileiro de Geografia e Estatística Ipea Instituto de Pesquisa Econômica Aplicada

Kcap Coeficiente de captação específica Kcons Coeficiente de consumo específico

km Quilômetros

km² Quilômetros quadrados

kW Quilowatt

Ltda. Sociedade Limitada

I/dia Litros por dia

I/hab.dia Litros por habitante ao dia

I/s Litros por segundo

l/s/ha Litros por segundo por hectare m³/s Metros cúbicos por segundo MMA Ministério do Meio Ambiente MME Ministério de Minas e Energia

MW Megawatt no Número

NBR Norma Brasileira

ONS Operador Nacional do Sistema Elétrico

PCH Pequena Central Hidroelétrica

PERH/SC Plano Estadual de Recursos Hídricos de Santa Catarina

PNRH Política Nacional de Recursos Hídricos PMSB Plano Municipal de Saneamento Básico

Prud Programa das Nações Unidas para o Desenvolvimento Sustentável

Pop População Q Vazão

QcapVazão de captaçãoQconsVazão de consumoQpcConsumo per capitaQretVazão de retorno

RH4 Região Hidrográfica Planalto de Lages

S. A. Sociedade Anônima

Santur Agência de Desenvolvimento do Turismo de Santa Catarina

SDE Secretaria de Estado de Desenvolvimento Econômico



# Statkraft Energias Renováveis S.A Avaliação Integrada da Bacia Hidrográfica do rio Canoas Volume II – Usos Múltiplos da Água



s.i. Sem Informação

Sistema IBGÉ de Recuperação Automática Sidra

Sistema Nacional de Informações sobre Recursos Hídricos Sistema Nacional de Informações em Saneamento Snirh

Snis

Usina Hidroelétrica UHE





### INTRODUÇÃO

No âmbito da Avaliação Integrada da Bacia Hidrográfica (AIBH) do Rio Canoas, avaliaram-se os principais aspectos ambientais e a dinâmica socioeconômica da área compreendida pelos municípios banhados pelo rio Canoas, assim como sua interação com os empreendimentos hidrelétricos em operação, em instalação e previstos para este rio principal. Procurou-se construir, a partir da proposição e da avaliação de cenários prospectivos de crescimento energético e econômico regional, diretrizes e recomendações para o desenvolvimento sustentável da área de estudo.

A AIBH consiste em um instrumento de planejamento obrigatório para fins de licenciamento ambiental de empreendimentos hidrelétricos no estado de Santa Catarina e foi instituída pela Lei Estadual nº 14.652, de 13 de janeiro de 2009 (SANTA CATARINA, 2009). Posteriormente, essa lei foi alterada pela Lei Estadual nº 16.344, de janeiro de 2014 (SANTA CATARINA, 2014), regulamentada pelo Decreto Estadual nº 365, de 10 de setembro de 2015 (SANTA CATARINA, 2015) e, finalmente, modificada pela Lei Estadual nº 17.451, de 10 de janeiro de 2018 (SANTA CATARINA, 2018).

Destaca-se, ainda, a Lei nº 9.433, de 8 de janeiro de 1997 (BRASIL, 1997), que instituiu a Política Nacional dos Recursos Hídricos (PNRH) e estabelece, entre outros fundamentos, que a gestão dos recursos hídricos, bem como os estudos associados à esta finalidade, deve sempre contemplar os usos múltiplo das águas.

Ainda em referência à Lei nº 9.433/1997 (BRASIL, 1997), os Planos de Recursos Hídricos são planos diretores que visam fundamentar e orientar a implementação da PNRH. O Snirh, por sua vez, tem como objetivo reunir e divulgar os dados e informações sobre a situação dos recursos hídricos. Já a outorga de direito de uso dos recursos hídricos e o cadastro de usuários são, segundo a Agência Nacional de Águas (ANA, 2019), instrumentos que têm como objetivo assegurar o controle quantitativo e qualitativo dos usos da áqua e o efetivo exercício dos direitos de acesso à água.

Neste contexto, o presente documento, que constitui o Volume II - Usos Múltiplos da Água da AIBH do Rio Canoas, apresenta os estudos de usos múltiplos da água para a área de interesse. Tal investigação foi balizada pelos instrumentos da PNRH, destacando-se, dentre estes, o Plano de Recursos Hídricos; o Sistema de Informações sobre Recursos Hídricos (Snirh); as outorgas dos direitos de uso de recursos hídricos e os cadastros de usuários de recursos hídricos.

#### ASPECTOS METODOLÓGICOS

A caracterização quantitativa e qualitativa dos usos múltiplos das águas foi realizada para a área de estudo definida para AIBH, apresentada no Mapa 1, que compreende os municípios banhados pelo rio Canoas e restritos à bacia hidrográfica deste rio principal. Desta maneira, os 18 municípios contemplados são: Abdon Batista; Anita Garibaldi; Bocaina do Sul; Bom Retiro; Brunópolis; Campos Novos; Celso Ramos; Cerro Negro; Correia Pinto; Curitibanos; Lages; Otacílio Costa; Palmeira; Ponte Alta; Rio Rufino; São José do Cerrito; Urubici e Vargem.

Para o diagnóstico das demandas hídricas da área de estudo, consideraram-se, além dos usos existentes no rio Canoas, aqueles com interferências nos recursos hídricos da região, sejam superficiais ou subterrâneos. Para tanto, apreciaram-se as outorgas federais deferidas pela ANA (2021a), o cadastro de usuários de recursos hídricos disponibilizado pela Secretaria de Estado do Desenvolvimento Econômico Sustentável (SDE, 2021a), o Plano Estadual de







Recursos Hídricos de Santa Catarina (PERH/SC) (SDE, 2017), os planos de saneamento municipais, dentre outros dados e informações pertinentes à utilização de recursos hídricos, os quais são detalhados ao longo do texto.

Em relação aos cadastros disponibilizados pela SDE (2021a), cabe esclarecer que os dados são fruto de etapa preliminar à outorga, cujo registro é realizado pelo próprio usuário e correspondem, portanto, aos usos insignificantes, aos usos a serem outorgados e aos usos já outorgados, compreendendo interferências em recursos hídricos de dominialidade estadual e federal. Diante disso, visando evitar a duplicidade, foram descartados os cadastros que representam outorgas federais já emitidas pela ANA. Pontua-se, ainda, que o referido banco de dados, conforme informado por colaborador da SDE via e-mails apresentados no Anexo A. é utilizado para fins de planejamento e avaliação da disponibilidade hídrica para concessão das outorgas estaduais.

Na sequência, com intuito de traçar um referencial espacial de análise dos atributos físicos, a área de estudo foi tratada com auxílio do perfil longitudinal do leito fluvial exposto na Figura 2.1, segundo os compartimentos (Alto, Médio e Baixo) do rio Canoas, apresentados, também, no Mapa 1.

As incursões feitas em campo tiveram, também, papel fundamental para que a avaliação dos usos da água representasse a utilização dos recursos hídricos na área de estudo.

Este conjunto de informações e análises é essencial para a compreensão da dinâmica quanto à demanda e disponibilidade hídrica da região em estudo, contribuindo para a elaboração do diagnóstico ambiental; para a estimativa de vazões de usos para as diversas finalidades; para a projeção de cenários futuros, bem como para a comparação das demandas com a disponibilidade hídrica e análise de conflitos na região, componentes indispensáveis no contexto da AIBH.





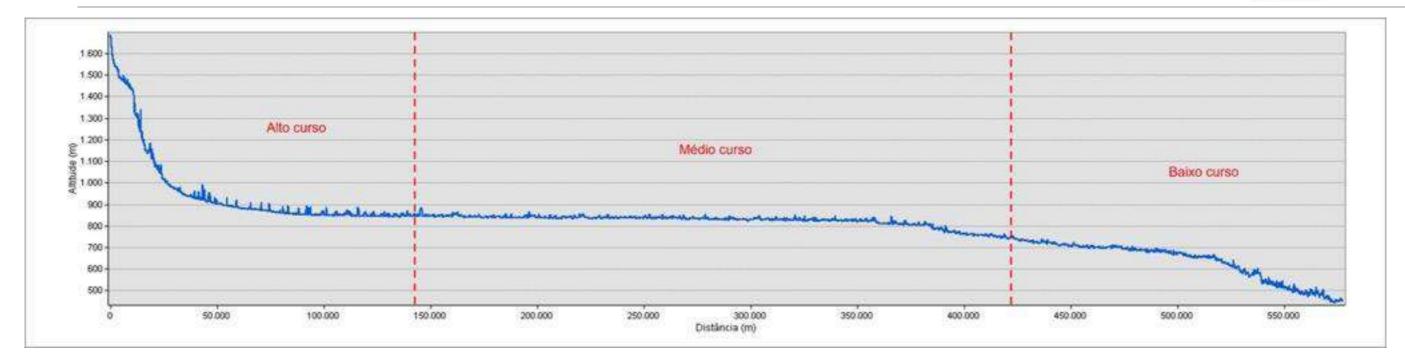
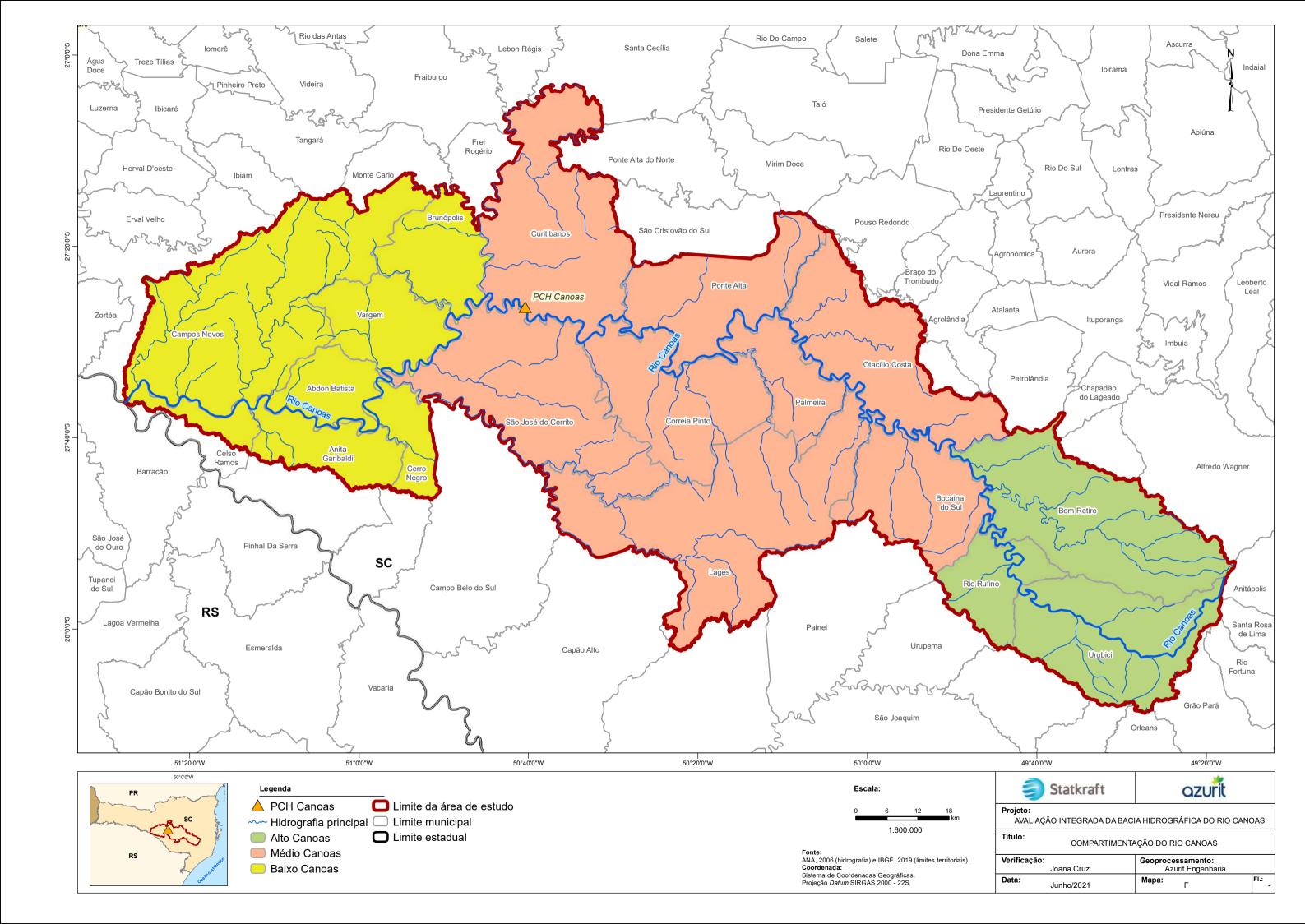




Figura 2.1 - Perfil longitudinal do leito fluvial do rio Canoas.

Nota: Em destaque, na cor vermelha, os compartimentos (alto, médio e baixo) do rio Canoas.







#### DIAGNÓSTICO DOS USOS MÚLTIPLOS DA ÁGUA

O diagnóstico dos usos das águas e sua relevância no contexto geral são fundamentais para o gerenciamento adequado dos recursos hídricos, sendo necessário o esclarecimento de alguns conceitos essenciais.

O uso da água deve ser identificado como consuntivo guando ocorre a redução do volume de água de um corpo hídrico, resultando em alteração da disponibilidade. Já o uso não consuntivo é caracterizado quando não ocorre redução de volume, podendo, no entanto, alterar condicionantes físicas e afetar outros setores (BRASIL, 2006).

O levantamento dos usos não consuntivos exerce papel fundamental na esfera do diagnóstico dos usos múltiplos, sendo imperativo para avaliar a qualidade da água disponível, eventuais alterações no regime fluviométrico, além de refletir a interação dos usuários com os recursos hídricos.

A estimativa das demandas relativas aos usos consuntivos da água, por sua vez, tem por objetivo subsidiar os estudos técnicos que visam manter atualizado o balanço entre a demanda e a disponibilidade hídrica, em quantidade, para o eficaz gerenciamento dos recursos hídricos (BRASIL, 2006).

De maneira resumida, após consultas ao Cadastro Nacional de Usuários de Recursos Hídricos (Cnarh) (ANA, 2021a) e ao Cadastro Estadual de Usuários de Recursos Hídricos (Ceurh) (SDE, 2021a), constatou-se que os usos consuntivos mais significantes na área de estudo são, nesta ordem: a criação animal; o uso industrial; o abastecimento público e a irrigação. Paralelamente, aquicultura, mineração, produção de energia termoelétrica, dentre outros, foram identificados com menor relevância.

No que se refere aos usos não consuntivos identificados, destacam-se o aproveitamento hidrelétrico; o lançamento de efluentes; a regularização de vazões; a recreação; a pesca e a navegação.

Diante do exposto e no contexto do diagnóstico dos usos múltiplos para a AIBH do Rio Canoas, apresenta-se, a seguir, a descrição detalhada sobre cada uso hídrico preponderante dentro da área de estudo.

#### 3.1 **Usos Consuntivos**

Conforme já mencionado, os usos consuntivos mais significantes na área de estudo são: a criação animal (19,90%); o uso industrial (16,56%); o abastecimento público (13,72%) e a irrigação (10,25%). Paralelamente, foram identificados usos menos expressivos na aquicultura, mineração e produção de energia termelétrica. Atividades que compreendem outras finalidades, por sua vez, representam a maior parte da demanda (36,81%), como demonstra Figura 3.1.





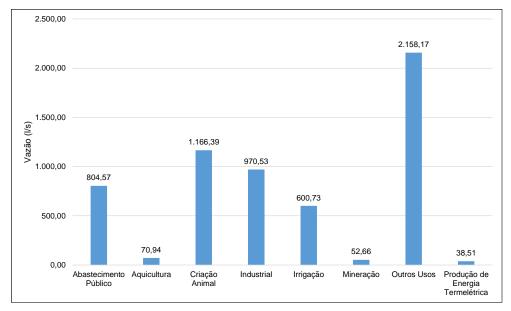



Figura 3.1 - Demanda hídrica por finalidade na área de estudo.

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).

Dentre toda a demanda hídrica consuntiva na área de estudo (5.862,49 l/s), cerca de 47% (2.745,35 l/s) é proveniente de fontes superficiais. Desta, destacam-se o uso industrial, a criação animal e o abastecimento público, conforme Figura 3.2.

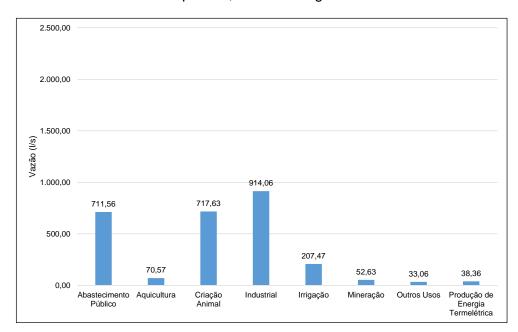



Figura 3.2 - Demanda hídrica superficial por finalidade na área de estudo.

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).

No que se refere aos usos provenientes de fontes subterrâneas, que correspondem a 53,17% (3.117,15 l/s) da demanda hídrica consuntiva, predomina-se a utilização das águas para finalidades diversas, como demonstrado na Figura 3.3. Tal demanda contempla, em geral, usuários com vazões relativamente baixas, as quais, somadas, acarretam significativa retirada de água.





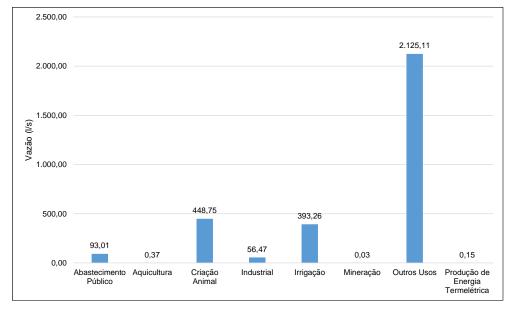



Figura 3.3 - Demanda hídrica subterrânea por finalidade na área de estudo.

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).

#### 3.1.1 Abastecimento Humano

#### 3.1.1.1 Abastecimento Rural

De acordo com os Planos Municipais de Saneamento (PMSB), elaborados pela SDE (2011a, 2011b, 2011c, 2011d, 2011e, 2011f, 2011g, 2011h, 2011i, 2011j) e, para os municípios de Correia Pinto e Otacílio Costa, elaborados pela Notus Serviços de Engenharia S/C Ltda. (NOTUS, 2015a, 2015b), o abastecimento das comunidades rurais dos municípios integrantes da área de estudo se dava por meio de prestadoras de serviço de água e/ou ações individuais ou comunitárias, para as quais eram utilizadas captações superficiais e/ou subterrâneas.

Durante os trabalhos de campo foram visitadas áreas rurais às margens do rio Canoas. Em especial na porção denominada Alto Canoas, verificou-se a presença de pousadas e campings voltados ao turismo, bem como de casas de campo destinadas ao lazer e/ou aluguel em temporada, conforme Figura 3.4. No Médio e Baixo Canoas, por sua vez, foram identificadas algumas comunidades rurais, demonstradas na Figura 3.5.

Embora não tenham sido identificados pontos de captação durante a vistoria de campo, é plausível admitir que o abastecimento humano ocorra, principalmente, por meio de captações individuais, sejam subterrâneas ou superficiais.

Ratificando o que foi anteriormente descrito, verificou-se, segundo SDE (2021b), significativa demanda hídrica para usos diversos. Tal demanda é abarcada, em geral, por usuários localizados em zonas rurais e com vazões de captação relativamente baixas, sendo, em sua maioria, provenientes de fontes subterrâneas.

Cabe salientar, ainda, que, para o abastecimento rural, não foi possível realizar a avaliação quantitativa da demanda hídrica, uma vez que os dados utilizados não diferenciam o abastecimento público para população rural e urbana.







Figura 3.4 - Casas de campo identificadas no Alto Canoas, no município de Urubici.











Figura 3.5 - Comunidades rurais nas margens do médio curso do rio Canoas.

Nota: A - Residência na comunidade Glória, no município de São José do Cerrito. B - Mercearia na comunidade Vila Santa Catarina, no município de Curitibanos. C - Igreja na comunidade São João, no município de São José do Cerrito.

#### 3.1.1.2 Abastecimento Urbano

No que se refere à elaboração do diagnóstico dos serviços de abastecimento urbano de água dos municípios avaliados, o presente estudo valeu-se, principalmente, dos dados do Sistema Nacional de Informações em Saneamento (Snis) (BRASIL, 2019).

Neste contexto, a população urbana dos municípios integrantes da área de estudo é abastecida pelas prestadoras de serviço de água e esgoto que captam a água de mananciais, tratam e a distribuem aos domicílios. Sabe-se que o abastecimento é realizado, em sua maioria, pela Companhia Catarinense de Águas e Saneamento (Casan), exemplificada na Figura 3.6, existindo, também, municípios cuja responsabilidade pelo serviço é da prefeitura municipal.







Figura 3.6 - Unidade da Casan no município de Otacílio Costa.

Ainda de acordo com o Snis (BRASIL, 2019), 299.358 habitantes dos municípios da área de estudo eram atendidos com serviços de abastecimento de água oferecidos pelas prestadoras de serviços autônomos. A população total desses municípios, na época do levantamento, correspondia a 328.279 habitantes. Portanto, conforme Tabela 3.1, o índice de atendimento de água era, em média, 75,47%, sendo que este índice alcança 99,87% quando se trata de abastecimento à população urbana.

Tabela 3.1 - População atendida pelos serviços de abastecimento de água.

| Município           | População<br>total<br>(Habitante) | População total<br>atendida com<br>abastecimento de água<br>(habitante) | População<br>urbana<br>atendida<br>(habitante) | População<br>rural atendida<br>(habitante) | Índice de<br>atendimento<br>urbano (%) | Índice de<br>atendimento<br>total (%) |
|---------------------|-----------------------------------|-------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|----------------------------------------|---------------------------------------|
| Abdon Batista       | 2.563                             | 2.563                                                                   | 699                                            | 1.864                                      | 100                                    | 100                                   |
| Anita Garibaldi     | 7.133                             | 5.633                                                                   | 3.765                                          | 1.868                                      | 100                                    | 78,97                                 |
| Bocaina do Sul      | 3.474                             | 1.337                                                                   | 1.021                                          | 316                                        | 100                                    | 38,49                                 |
| Bom Retiro          | 9.966                             | 7.342                                                                   | 71.152                                         | 190                                        | 100                                    | 73,67                                 |
| Brunópolis          | 2.420                             | 2.420                                                                   | 599                                            | 1.821                                      | 100                                    | 100                                   |
| Campos Novos        | 36.244                            | 34.917                                                                  | 29.304                                         | 5.613                                      | 98,1                                   | 96,34                                 |
| Celso Ramos         | 2.728                             | 1.477                                                                   | 858                                            | 619                                        | 100                                    | 54,14                                 |
| Cerro Negro         | 3.124                             | 1.247                                                                   | 666                                            | 581                                        | 100                                    | 39,92                                 |
| Correia Pinto       | 12.795                            | 12.731                                                                  | 10.404                                         | 2.327                                      | 100                                    | 99,5                                  |
| Curitibanos         | 39.745                            | 37.807                                                                  | 36.608                                         | 1.199                                      | 100                                    | 95,12                                 |
| Lages               | 157.544                           | 154.739                                                                 | 154.615                                        | 124                                        | 99,9                                   | 98,22                                 |
| Otacílio Costa      | 18.744                            | 17.788                                                                  | 17.085                                         | 703                                        | 100                                    | 94,9                                  |
| Palmeira            | 2.627                             | 1.396                                                                   | 1.024                                          | 372                                        | 100                                    | 53,14                                 |
| Ponte Alta          | 4.682                             | 4.186                                                                   | 3.420                                          | 766                                        | 99,9                                   | 89,41                                 |
| Rio Rufino          | 2.483                             | 1.200                                                                   | 700                                            | 500                                        | 99,9                                   | 48,33                                 |
| São José do Cerrito | 8.295                             | 2.672                                                                   | 2.229                                          | 443                                        | 100                                    | 32,21                                 |
| Urubici             | 11.235                            | 7.426                                                                   | 7.420                                          | 6                                          | 100                                    | 66,1                                  |
| Vargem              | 2.477                             | 2.477                                                                   | 790                                            | 1.687                                      | 100                                    | 100                                   |
| Total               | 328.279                           | 299.358                                                                 | 342.359                                        | 20.999                                     | 99,87                                  | 75,47                                 |

Fonte: BRASIL (2019).





Em termos quantitativos, conforme Tabela 3.2, a captação de água para abastecimento público nos municípios estudados, segundo Snis (BRASIL, 2019), totalizava 947,81 l/s. Entretanto, do total captado, eram consumidos apenas 527,27 l/s, o que remete ao índice médio de perdas de 34,75% na distribuição, com consumo médio de água per capita de 151,60 l/hab/dia.

Tabela 3.2 - Captação e consumo de água para os municípios estudados.

| Município           | Prestador de serviço | Vazão<br>produzida (I/s) | Vazão consumida<br>(I/s) | Consumo médio<br>per capita<br>(l/hab/dia) | Índice de<br>perdas (%) |
|---------------------|----------------------|--------------------------|--------------------------|--------------------------------------------|-------------------------|
| Abdon Batista       | PREFEITURA           | 22,20                    | 17,44                    | 588,3                                      | 21,43                   |
| Anita Garibaldi     | CASAN                | 10,98                    | 7,08                     | 109,8                                      | 35,46                   |
| Bocaina do Sul      | CASAN                | 3,18                     | 2,02                     | 130,8                                      | 36,24                   |
| Bom Retiro          | CASAN                | 13,54                    | 9,64                     | 114,2                                      | 28,66                   |
| Brunópolis          | PREFEITURA           | 6,34                     | 5,71                     | 201,6                                      | 10                      |
| Campos Novos        | PREFEITURA           | 81,50                    | 48,78                    | 120,9                                      | 40,14                   |
| Celso Ramos         | CASAN                | 2,79                     | 1,73                     | 102,7                                      | 38,1                    |
| Cerro Negro         | CASAN                | 2,37                     | 1,58                     | 110,61                                     | 33,46                   |
| Correia Pinto       | CASAN                | 30,72                    | 18,91                    | 126,8                                      | 38,44                   |
| Curitibanos         | CASAN                | 93,37                    | 50,42                    | 116,3                                      | 45,93                   |
| Lages               | PREFEITURA           | 597,35                   | 313,20                   | 174,7                                      | 42,19                   |
| Otacílio Costa      | CASAN                | 44,27                    | 25,48                    | 124,2                                      | 42,45                   |
| Palmeira            | CASAN                | 3,21                     | 1,89                     | 118,3                                      | 41,12                   |
| Ponte Alta          | CASAN                | 8,67                     | 5,28                     | 109,2                                      | 37,23                   |
| Rio Rufino          | PREFEITURA           | 2,63                     | 2,38                     | 171,2                                      | 9,64                    |
| São José do Cerrito | CASAN                | 5,51                     | 3,24                     | 105,6                                      | 41,17                   |
| Urubici             | CASAN                | 13,45                    | 10,23                    | 121,1                                      | 23,86                   |
| Vargem              | PREFEITURA           | 5,71                     | 2,28                     | 82,4                                       | 60                      |
| Total               | -                    | 947,81                   | 527,27                   | 151,59 *                                   | 34,75 *                 |

Fonte: BRASIL (2019).

Nota: \* média dos valores atribuídos aos municípios da área de estudo.

A Tabela 3.3 apresenta o compilado das fontes de captação para abastecimento de água dos municípios estudados.





Tabela 3.3 - Mananciais destinados ao abastecimento dos municípios avaliados.

| Município           | Tipo de captação           | Curso d`água                |  |
|---------------------|----------------------------|-----------------------------|--|
| Abdon Batista       | Subterrânea                | -                           |  |
| Anita Garibaldi     | Superficial e subterrânea  | Rio Lageado dos Antunes     |  |
| Bocaina do Sul      | Superficial e subterrânea  | Córrego Assink              |  |
| Bom Retiro          | s/i                        | -                           |  |
| Brunópolis          | Subterrânea                | -                           |  |
| Campos Novos        | Superficial e subterrânea  | Rio Lageado Restingão       |  |
| Celso Ramos         | Subterrânea                | -                           |  |
| Cerro Negro         | Subterrânea                | -                           |  |
| Correia Pinto       | Superficial e subterrânea  | Rio das Pombas e Rio Canoas |  |
| Curitibanos         | Superficial e subterrânea  | Rio Marombas                |  |
| Lages               | Superficial e subterrânea  | Rio Caveiras                |  |
| Otacílio Costa      | Superficial                | Rio Desquite e Rio Canoas   |  |
| Palmeira            | Superficial e Subeterrânea | Rio Palmeira                |  |
| Ponta Alta          | Superficial e subterrânea  | Rio Ponte Alta do Sul       |  |
| Rio Rufino          | Superficial                | Rio Rufino                  |  |
| São José do Cerrito | Superficial e subterrânea  | Rio Antunes                 |  |
| Urubici             | Superficial e subterrânea  | Rio Capoeiras               |  |
| Vargem              | Subterrânea                | -                           |  |

Fonte: SDE (2011a, 2011b, 2011c, 2011d, 2011e, 2011f, 2011g, 2011h, 2011i, 2011j)), SDE (2006) e NOTUS (2015a, 2015b).

Nota: s/i: informação não disponível.

Em relação ao tratamento das águas destinadas ao abastecimento urbano, de acordo com Brasil (2019), 94,26% da água captada pelas concessionárias era tratada, estando seus dados disponibilizados na Tabela 3.4.





Tabela 3.4 - Volume de água captada e tratada pelas prestadoras de serviços de água e esgoto dos municípios envolvidos.

| Município           | Prestador de Serviço | Água Captada (I/s) | Água Tratada em ETA (I/s) |
|---------------------|----------------------|--------------------|---------------------------|
| Abdon Batista       | PREFEITURA           | 22,20              | 0,00                      |
| Anita Garibaldi     | CASAN                | 10,98              | 0,00                      |
| Bocaina do Sul      | CASAN                | 3,18               | 0,00                      |
| Bom Retiro          | CASAN                | 13,54              | 13,54                     |
| Brunópolis          | PREFEITURA           | 6,34               | 0,00                      |
| Campos Novos        | PREFEITURA           | 81,50              | 78,22                     |
| Celso Ramos         | CASAN                | 2,79               | 2,79                      |
| Cerro Negro         | PREFEITURA           | 2,37               | 0,00                      |
| Correia Pinto       | PREFEITURA           | 30,72              | 30,72                     |
| Curitibanos         | CASAN                | 93,37              | 93,37                     |
| Lages               | PREFEITURA           | 597,35             | 597,35                    |
| Otacílio Costa      | CASAN                | 44,27              | 44,27                     |
| Palmeira            | CASAN                | 3,21               | 3,21                      |
| Ponte Alta          | CASAN                | 8,67               | 8,80                      |
| Rio Rufino          | PREFEITURA           | 2,63               | 2,63                      |
| São José do Cerrito | CASAN                | 5,51               | 3,65                      |
| Urubici             | CASAN                | 13,45              | 13,45                     |
| Vargem              | PREFEITURA           | 5,71               | 1,43                      |
| Total               | -                    | 947,81             | 893,44                    |

Fonte: Brasil (2019).

Nota: Os municípios de Abdon Batista, Anita Garibaldi, Bocaina do Sul, Brunópolis e Cerro Negro não realizavam o tratamento da água captada.

#### 3.1.1.3 Cadastro e Outorgas de Uso de Recursos Hídricos

No que se refere aos cadastros e outorgas de uso de recursos hídricos na área de estudo, conforme já mencionado, a presente avaliação valeu-se de dados disponibilizados pelo Cnarh (ANA, 2021a) e pelo Ceurh (SDE, 2021a).

Com base nos dados supracitados, o abastecimento público representa a terceira maior demanda, correspondendo ao total de 804,57 l/s. De todos os registros para abastecimento público, apresentados na Tabela 3.5, apenas um (1), localizado em Campos Novos, corresponde a uso outorgado pela ANA com captação direta do rio Canoas.





Tabela 3.5 - Registros para abastecimento público na área de estudo.

| o (I/s)                                 |
|-----------------------------------------|
| 06                                      |
| 16                                      |
| 77                                      |
| 58                                      |
| 46                                      |
| 46                                      |
| 24                                      |
| 24                                      |
| 22                                      |
| 20                                      |
| 14                                      |
| 10                                      |
| 75                                      |
| 33                                      |
| 29                                      |
| 27                                      |
| 21                                      |
| 17                                      |
| 44                                      |
| 44                                      |
| 40                                      |
| 96                                      |
| 47                                      |
| 84                                      |
| 23                                      |
| 58                                      |
| 19                                      |
| 19                                      |
| 71                                      |
| 48                                      |
| 33                                      |
| 51                                      |
| 48                                      |
| 47                                      |
| 23                                      |
| 23                                      |
| 19                                      |
| 10                                      |
| 08                                      |
| 18                                      |
| 68                                      |
| 34                                      |
| , , , , , , , , , , , , , , , , , , , , |

Continua...





Continuação

| Registro     | Interferência                      | Município           | Vazão (I/s) |
|--------------|------------------------------------|---------------------|-------------|
| Cadastro SDE | Poço profundo                      | Celso Ramos         | 0,23        |
| Cadastro SDE | Poço profundo                      | Celso Ramos         | 0,22        |
| Cadastro SDE | Poço profundo                      | Celso Ramos         | 0,15        |
| Cadastro SDE | Rio ou curso d'água                | Correia Pinto       | 33,96       |
| Cadastro SDE | Poço profundo                      | Correia Pinto       | 4,01        |
| Cadastro SDE | Poço profundo                      | Correia Pinto       | 0,48        |
| Cadastro SDE | Poço profundo                      | Correia Pinto       | 0,14        |
| Cadastro SDE | Poço profundo                      | Curitibanos         | 8,22        |
| Cadastro SDE | Poço profundo                      | Curitibanos         | 3,42        |
| Cadastro SDE | Poço profundo                      | Curitibanos         | 3,08        |
| Cadastro SDE | Poço profundo                      | Curitibanos         | 3,08        |
| Cadastro SDE | Poço profundo                      | Curitibanos         | 2,96        |
| Cadastro SDE | Poço profundo                      | Curitibanos         | 2,05        |
| Cadastro SDE | Poço profundo                      | Curitibanos         | 2,05        |
| Cadastro SDE | Poço profundo                      | Curitibanos         | 2,05        |
| Cadastro SDE | Poço profundo                      | Curitibanos         | 2,05        |
| Cadastro SDE | Rio ou curso d'água                | Lages               | 591,78      |
| Cadastro SDE | Poço profundo                      | Lages               | 1,14        |
| Cadastro SDE | Poço profundo                      | Lages               | 0,11        |
| Cadastro SDE | Poço profundo                      | Lages               | 0,11        |
| Cadastro SDE | Rio ou curso d'água                | Otacílio Costa      | 37,72       |
| Cadastro SDE | Poço profundo                      | Palmeira            | 4,58        |
| Cadastro SDE | Rio ou curso d'água                | Palmeira            | 3,11        |
| Cadastro SDE | Poço profundo                      | Palmeira            | 2,05        |
| Cadastro SDE | Poço profundo                      | Palmeira            | 2,05        |
| Cadastro SDE | Poço profundo                      | Palmeira            | 1,03        |
| Cadastro SDE | Rio ou curso d'água                | Ponta Alta          | 8,21        |
| Cadastro SDE | Poço profundo                      | Ponta Alta          | 1,03        |
| Cadastro SDE | Poço profundo                      | Ponta Alta          | 0,65        |
| Cadastro SDE | Barragem de nível ou de acumulação | Rio Rufino          | 3,81        |
| Cadastro SDE | Rio ou curso d'água                | São José do Cerrito | 3,45        |
| Cadastro SDE | Poço profundo                      | São José do Cerrito | 1,83        |
| Cadastro SDE | Rio ou curso d'água                | Urubici             | 13,37       |
| Cadastro SDE | Nascente                           | Urubici             | 0,04        |
| Cadastro SDE | Poço profundo                      | Vargem              | 2,19        |
| Cadastro SDE | Poço profundo                      | Vargem              | 0,57        |
| Cadastro SDE | Poço profundo                      | Vargem              | 0,28        |
| Cadastro SDE | Poço profundo                      | Vargem              | 0,27        |
| Cadastro SDE | Poço profundo                      | Vargem              | 0,24        |
| Cadastro SDE | Poço profundo                      | Vargem              | 0,21        |
| Cadastro SDE | Poço profundo                      | Vargem              | 0,17        |

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).





Avaliou-se, ainda, a demanda hídrica para abastecimento público por município. Conforme Tabela 3.6, destaca-se o município de Lages, que apresenta consumo de 593,15 l/s, correspondente a 73,72% da demanda de toda a área de estudo.

Tabela 3.6 - Demanda hídrica para abastecimento público por município.

| Município           | Nº de captações | Vazão (I/s) | % da vazão |
|---------------------|-----------------|-------------|------------|
| Abdon Batista       | 10              | 5,44        | 0,68%      |
| Anita Garibaldi     | 7               | 12,11       | 1,51%      |
| Bocaina do Sul      | 4               | 5,24        | 0,65%      |
| Bom Retiro          | 4               | 15,13       | 1,88%      |
| Brunópolis          | 3               | 6,10        | 0,76%      |
| Campos Novos        | 11              | 9,16        | 1,14%      |
| Celso Ramos         | 6               | 3,81        | 0,47%      |
| Cerro Negro         | 0               | 0,00        | 0,00%      |
| Correia Pinto       | 4               | 38,59       | 4,80%      |
| Curitibanos         | 9               | 28,99       | 3,60%      |
| Lages               | 4               | 593,15      | 73,72%     |
| Otacílio Costa      | 1               | 37,72       | 4,69%      |
| Palmeira            | 5               | 12,82       | 1,59%      |
| Ponta Alta          | 3               | 9,89        | 1,23%      |
| Rio Rufino          | 1               | 3,81        | 0,47%      |
| São José do Cerrito | 2               | 5,28        | 0,66%      |
| Urubici             | 2               | 13,41       | 1,67%      |
| Vargem              | 7               | 3,93        | 0,49%      |
| Total               | 83              | 804,57      | 100,00%    |

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).

#### 3.1.1.3.1 Demanda Superficial

De toda a demanda hídrica para abastecimento urbano, 88,44% (711,56 l/s) provêm de captações superficiais, destacando-se, novamente, conforme Tabela 3.7, o município de Lages, cuja captação representa 83,17% desse valor.





Tabela 3.7 - Demanda hídrica superficial para abastecimento público por município.

| Município           | No de captações | Vazão (I/s) | % da vazão |
|---------------------|-----------------|-------------|------------|
| Abdon Batista       | 0               | 0,00        | 0,00%      |
| Anita Garibaldi     | 0               | 0,00        | 0,00%      |
| Bocaina do Sul      | 1               | 0,96        | 0,13%      |
| Bom Retiro          | 4               | 15,13       | 2,13%      |
| Brunópolis          | 0               | 0,00        | 0,00%      |
| Campos Novos        | 1               | 0,06        | 0,01%      |
| Celso Ramos         | 0               | 0,00        | 0,00%      |
| Cerro Negro         | 0               | 0,00        | 0,00%      |
| Correia Pinto       | 1               | 33,96       | 4,77%      |
| Curitibanos         | 0               | 0,00        | 0,00%      |
| Lages               | 1               | 591,78      | 83,17%     |
| Otacílio Costa      | 1               | 37,72       | 5,30%      |
| Palmeira            | 1               | 3,11        | 0,44%      |
| Ponta Alta          | 1               | 8,21        | 1,15%      |
| Rio Rufino          | 1               | 3,81        | 0,53%      |
| São José do Cerrito | 1               | 3,45        | 0,49%      |
| Urubici             | 1               | 13,37       | 1,88%      |
| Vargem              | 0               | 0,00        | 0,00%      |
| Total               | 14              | 711,56      | 100,00%    |

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).

#### 3.1.1.3.2 Demanda Subterrânea

No que se refere à captação subterrânea para abastecimento público, a vazão total é de apenas 93,01 l/s, sendo que 31,17% (28,99 l/s), como apresentado na Tabela 3.8, são destinados à cidade de Curitibanos. Além disso, as cidades de Anita Garibaldi (13,02%), Palmeira (10,44%) e Campos Novos (9,78%) representam relevante porção da vazão total.





Tabela 3.8 - Demandas hídricas subterrâneas para abastecimento público por município.

| Município           | No de captações | Vazão (I/s) | % da vazão |
|---------------------|-----------------|-------------|------------|
| Abdon Batista       | 10              | 5,44        | 5,85%      |
| Anita Garibaldi     | 7               | 12,11       | 13,02%     |
| Bocaina do Sul      | 3               | 4,28        | 4,60%      |
| Bom Retiro          | 0               | 0,00        | 0,00%      |
| Brunópolis          | 3               | 6,10        | 6,55%      |
| Campos Novos        | 10              | 9,10        | 9,78%      |
| Celso Ramos         | 6               | 3,81        | 4,09%      |
| Cerro Negro         | 0               | 0,00        | 0,00%      |
| Correia Pinto       | 3               | 4,63        | 4,98%      |
| Curitibanos         | 9               | 28,99       | 31,17%     |
| Lages               | 3               | 1,37        | 1,47%      |
| Otacílio Costa      | 0               | 0,00        | 0,00%      |
| Palmeira            | 4               | 9,71        | 10,44%     |
| Ponta Alta          | 2               | 1,67        | 1,80%      |
| Rio Rufino          | 0               | 0,00        | 0,00%      |
| São José do Cerrito | 1               | 1,83        | 1,96%      |
| Urubici             | 1               | 0,04        | 0,04%      |
| Vargem              | 7               | 3,93        | 4,23%      |
| Total               | 69              | 93,01       | 100,00%    |

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).

#### 3.1.2 Irrigação

No Brasil, conforme Snirh (ANA, 2021b), a irrigação é responsável pela maior parcela de retirada de água, com vazão de mais de 1.000 m³/s, correspondendo a 50,2% do total captado. Não diferentemente, de acordo com PERH/SC (SDE, 2017), a irrigação, na época do estudo, correspondia à maior demanda hídrica do estado de Santa Catarina, responsável por 48% da vazão de retirada total, sendo a soja, o milho e o arroz as principais culturas agrícolas.

Localmente, na porção estudada da bacia do rio Canoas, com base em ANA (2021a) e SDE (2021b), a irrigação é responsável por 10,24% da demanda hídrica, sendo que sua vazão de retirada equivale a 600,73 l/s.

Conforme visita de campo e Figura 3.7, há a prática da agricultura às margens do rio Canoas, sendo as monoculturas de milho, soja, eucalipto e pinus os principais cultivos verificados. Observaram-se, ainda, cultivos de maçã, uva e laranja, sendo o estado de Santa Catarina o maior produtor nacional de maçã. Cabe destacar que, na agricultura de grande porte, constatou-se intensa mecanização e sistemas de irrigação.





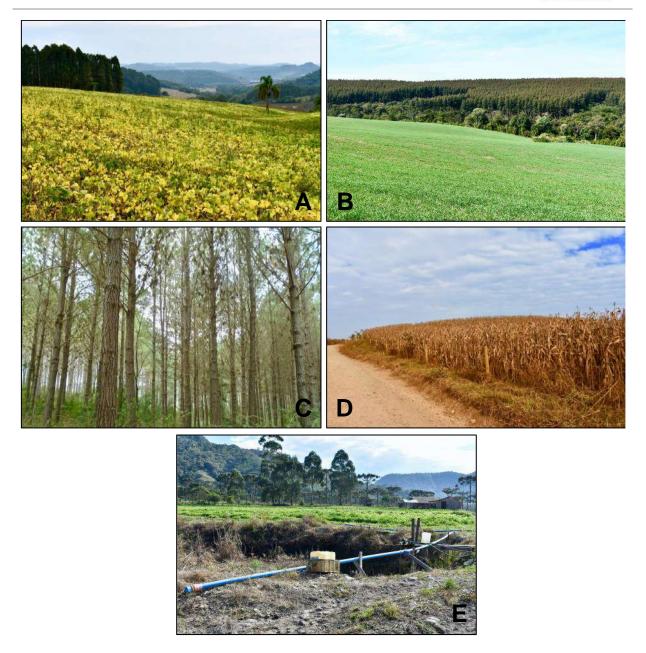



Figura 3.7 - Monoculturas presentes na área de estudo.

Nota: A - Em primeiro plano, monocultura de soja. Em segundo plano, cultura de Pinus, no município de São José do Cerrito; B e C - Cultivo de Eucalipto, no município de Ponte Alta; D - Cultivo de milho, no município de Anita Garibaldi; E - Sistema de irrigação e cultivo de hortaliças ao fundo, no município de Urubici.

#### 3.1.2.1 Área Irrigada

De acordo com dados do Censo Agropecuário de 2006 (IBGE, 2006), a área total irrigada dos 18 municípios estudados equivalia a 1.838,14 ha, totalizando 421 estabelecimentos. Esta pesquisa apontou, ainda, que o município de Curitibanos apresentava a maior área irrigada, com 734,74 ha, seguido por Urubici com 491,86 ha. Constatou-se, também, conforme Tabela 3.9, que o método de irrigação mais utilizado era o de aspersão (322 estabelecimentos, correspondendo a 76,48% do total), seguido pela irrigação localizada (63 estabelecimentos, representando 14,96% do total).







Já no Censo Agropecuário realizado no ano de 2017 (IBGE, 2017), foram cadastrados 811 estabelecimentos, denotando área irrigada de 2.260 ha nos municípios avaliados. Nesse levantamento, o método de irrigação por aspersão continuou sendo o mais utilizado.

Foi abordada também, conforme Tabela 3.10, a relação entre área irrigada e método de irrigação utilizado que apontou que, considerando o Censo Agropecuário realizado no ano de 2017 (IBGE, 2017), 65,4% da área (1.478 ha) era irrigada pelo método por aspersão; 31,68% (716 ha) pelo método localizado (gotejamento, micro aspersão etc.) e 2,92% (66 ha) por outros métodos.

Ainda tendo como referência os resultados da pesquisa mais recente (IBGE, 2017), os municípios de Curitibanos (650 ha), Lages (425 ha) e Urubici (328 ha) apresentaram a maior extensão de áreas irrigadas na região, cenário diferente se comparado ao censo de 2006 (IBGE, 2006), que apontou os municípios de Curitibanos (734,47 ha), Urubici (491,86 ha) e Bom Retiro (175,56 ha) com as maiores extensões de áreas irrigadas. Nesse período, os municípios que se destacaram na expansão de áreas irrigadas foram Lages e Brunópolis, passando de 40 ha e 47 ha, em 2006, para 425 ha e 137 ha em 2017, respectivamente.





Tabela 3.9 - Área irrigada e métodos de irrigação, de acordo com o Censo Agropecuário de 2006, para os municípios estudados da bacia hidrográfica do rio Canoas.

|                         |                  |               |                 |               |            |            |            | <u> </u>       |             |               |             |       |                |          |            |            |                     |           |       |          |
|-------------------------|------------------|---------------|-----------------|---------------|------------|------------|------------|----------------|-------------|---------------|-------------|-------|----------------|----------|------------|------------|---------------------|-----------|-------|----------|
| Método de I             | lrriac e e e     |               |                 |               |            |            |            |                |             | Município     |             |       |                |          |            |            |                     |           |       |          |
| Metodo de i             | irrigação        | Abdon Batista | Anita Garibaldi | Bocaina do Su | Bom Retire | Brunópolis | Campos Nov | os Celso Ramos | Cerro Negro | Correia Pinto | Curitibanos | Lages | Otacílio Costa | Palmeira | Ponte Alta | Rio Rufino | São José do Cerrito | Urubici V | ırgem | Total    |
|                         | Estabelecimentos | -             | -               | -             | 1,00       | 1,00       | 3,00       | -              | -           | -             | -           | -     | -              | -        | -          | 1,00       | -                   | -         | -     | 6,00     |
| Inundação               | Área (ha)        | -             | -               | -             | *          | *          | 4,52       | -              | -           | -             | -           | -     | -              | -        | -          | *          | -                   | -         | -     | 4,52     |
| 0.4                     | Estabelecimentos | -             | 1,00            | -             | -          | -          | 1,00       | -              | -           | -             | 1,00        | -     | 1,00           | -        | 1,00       | 1,00       | -                   | -         | -     | 6,00     |
| Sulcos                  | Área (ha)        | -             | *               |               | -          | -          | *          | -              | -           | -             | *           | -     | *              | -        | *          | *          | -                   | -         | -     | 0,00     |
| A (Di )                 | Estabelecimentos | -             | -               | -             | -          | -          | 2,00       | -              | -           | -             | 1,00        | 1,00  | -              | -        | -          | -          | -                   | -         | -     | 4,00     |
| Aspersão (Pivô Central) | Área (ha)        | -             | -               | -             | -          | -          | *          | -              | -           | -             | *           | *     | -              | -        | -          | -          | -                   | -         | -     | 0,00     |
| Outros Métodos de       | Estabelecimentos | 3,00          | 3,00            | 2,00          | 45,00      | 3,00       | 14,00      | 8,00           | -           | 7,00          | 83,00       | 11,00 | 1,00           | -        | 4,00       | 5,00       | 13,00               | 116,00    | -     | 318,00   |
| Aspersão                | Área (ha)        | 4,88          | 2,45            | *             | 124,36     | 47,00      | 150,55     | 17,04          | -           | 22,13         | 718,84      | 29,60 | *              | -        | 43,20      | 38,00      | 29,29               | 453,16    | -     | 1.680,50 |
| l l' d -                | Estabelecimentos | 5,00          | 2,00            | -             | 9,00       | -          | 2,00       | 7,00           | -           | -             | 3,00        | 5,00  | 1,00           | -        | -          | 3,00       | 4,00                | 22,00     | -     | 63,00    |
| Localizado              | Área (ha)        | 1,59          | *               | -             | 51,20      | -          | *          | 4,31           | -           | -             | 10,21       | 6,40  | *              | -        | -          | 6,00       | 4,93                | 38,70     | -     | 123,34   |
| 0 / "                   | Estabelecimentos | -             | 5,00            | -             | 2,00       | 1,00       | 1,00       | -              | 2,00        | 4,00          | 3,00        | 4,00  | -              | -        | -          | -          | 1,00                | 1,00      | -     | 24,00    |
| Outros métodos          | Área (ha)        | -             | 3,43            | -             | *          | *          | *          | -              | *           | 16,89         | 5,42        | 4,04  | -              | -        | -          | -          | *                   | *         | -     | 29,78    |
| Total                   | Estabelecimentos | 8,00          | 11,00           | 2,00          | 57,00      | 5,00       | 23,00      | 15,00          | 2,00        | 11,00         | 91,00       | 21,00 | 3,00           | -        | 5,00       | 10,00      | 18,00               | 139,00    | -     | 421,00   |
| Total                   | Área (ha)        | 6,47          | 5,88            | *             | 175,56     | 47,00      | 155,07     | 21,35          | 0,00        | 39,02         | 734,47      | 40,04 | 0,00           | -        | 43,20      | 44,00      | 34,22               | 491,86    | -     | 1.838,14 |

Fonte: IBGE (2006).

Nota: \* dados de área indisponíveis.





Tabela 3.10 - Área irrigada e métodos de irrigação, de acordo com o Censo Agropecuário de 2017, para os municípios estudados da bacia hidrográfica do rio Canoas.

|                                  | ~                |               |                 |                |            |            |              |             |             | Município     |             |        |                |          |            |            |                     |         |        |          |
|----------------------------------|------------------|---------------|-----------------|----------------|------------|------------|--------------|-------------|-------------|---------------|-------------|--------|----------------|----------|------------|------------|---------------------|---------|--------|----------|
| Métodos de Irrigaç               | çao              | Abdon Batista | Anita Garibaldi | Bocaina do Sul | Bom Retiro | Brunópolis | Campos Novos | Celso Ramos | Cerro Negro | Correia Pinto | Curitibanos | Lages  | Otacílio Costa | Palmeira | Ponte Alta | Rio Rufino | São José do Cerrito | Urubici | Vargem | Total    |
| 0-1-1                            | Estabelecimentos | 4,00          | 24,00           | 16,00          | 12,00      | -          | 16,00        | 3,00        | 10,00       | 8,00          | 25,00       | 21,00  | 6,00           | 2,00     | -          | 6,00       | 13,00               | 59,00   | -      | 225,00   |
| Gotejamento                      | Área (ha)        | 1,00          | 15,00           | 6,00           | 45,00      | -          | 14,00        | *           | 4,00        | 50,00         | 21,00       | 392,00 | 1,00           | *        | -          | 21,00      | 22,00               | 112,00  | -      | 704,00   |
| Missassassas                     | Estabelecimentos | -             | 1,00            | 1,00           | 1,00       | -          | 2,00         | 1,00        | -           | 2,00          | 11,00       | 4,00   | 3,00           | 2,00     | 1,00       | 1,00       | 1,00                | 5,00    | 2,00   | 38,00    |
| Microaspersão                    | Área (ha)        | -             | *               | *              | *          | -          | *            | *           | -           | *             | 10,00       | *      | 2,00           | *        | *          | *          | *                   | *       | *      | 12,00    |
| Outro mittodo                    | Estabelecimentos | -             | -               | -              | -          | -          | -            | -           | 1,00        | -             | -           | 1,00   | -              | 1,00     | -          | -          | -                   | -       | -      | 3,00     |
| Outros métodos                   | Área (ha)        | -             | -               | -              | -          | -          | -            | -           | *           | -             | -           | *      | -              | *        | -          | -          | -                   | -       | -      | 0,00     |
| Inundos so (Suportício)          | Estabelecimentos | -             | -               | -              | -          | -          | -            | 3,00        | -           | -             | -           | -      | -              | -        | -          | -          | -                   | -       | -      | 3,00     |
| Inundação (Superfície)           | Área (ha)        | -             | -               | -              | -          | -          | -            | *           | -           | -             | -           | -      | -              | -        | -          | -          | -                   | -       | -      | 0,00     |
| Culana (Curantínia)              | Estabelecimentos | -             | -               | -              | -          | -          | -            | -           | -           | -             | -           | -      | -              | -        | -          | -          | -                   | -       | -      | 0,00     |
| Sulcos (Superfície)              | Área (ha)        | -             | -               | -              | -          | -          | -            | -           | -           | -             | -           | -      | -              | -        | -          | -          | -                   | -       | -      | 0,00     |
| Outros Métodos (Superfície)      | Estabelecimentos | -             | -               | -              | -          | -          | 1,00         | -           | -           | -             | 1,00        | -      | -              | -        | -          | -          | -                   | -       | -      | 2,00     |
| Outros Metodos (Superiicie)      | Área (ha)        | -             | -               | -              | -          | -          | *            | -           | -           | -             | *           | -      | -              | -        | -          | -          | -                   | -       | -      | 0,00     |
| Aspersão (Autopropelido/Carretel | Estabelecimentos | -             | -               | 1,00           | 5,00       | 7,00       | 6,00         | -           | 1,00        | 1,00          | 6,00        | -      | -              | -        | 1,00       | 1,00       | 1,00                | 4,00    | -      | 34,00    |
| Enrolador)                       | Área (ha)        | -             | -               | *              | *          | *          | 83,00        | -           | *           | *             | 18,00       | -      | -              | -        | *          | *          | *                   | *       | -      | 101,00   |
| Asspersão (Pivô Central)         | Estabelecimentos | -             | -               | -              | -          | 1,00       | 2,00         | -           | -           | -             | -           | -      | -              | -        | -          | -          | 1,00                | -       | -      | 4,00     |
| Asspersão (Pivo Ceritiai)        | Área (ha)        | -             | -               | -              | -          | *          | *            | -           | -           | -             | -           | -      | -              | -        | -          | -          | *                   | -       | -      | 0,00     |
| Aspersão (Convencional)          | Estabelecimentos | 4,00          | 3,00            | 2,00           | 51,00      | 67,00      | 22,00        | 14,00       | -           | 4,00          | 122,00      | 9,00   | -              | 4,00     | 5,00       | 4,00       | 24,00               | 78,00   | -      | 413,00   |
| Aspersão (Convencional)          | Área (ha)        | 19,00         | *               | *              | 100,00     | 137,00     | 115,00       | 53,00       | -           | 17,00         | 597,00      | 21,00  | -              | 7,00     | 11,00      | 14,00      | 70,00               | 216,00  | -      | 1.377,00 |
| Subsuperfíce                     | Estabelecimentos | -             | -               | -              | -          | 1,00       | -            | 8,00        | 2,00        | 1,00          | 3,00        | 7,00   | -              | -        | 1,00       | 1,00       | -                   | -       | -      | 24,00    |
| Subsuperfice                     | Área (ha)        | -             | -               | -              | -          | *          | -            | 41,00       | *           | *             | *           | 4,00   | -              | -        | *          | *          | -                   | -       | -      | 45,00    |
| Malbaaãa                         | Estabelecimentos | -             | -               | 4,00           | 1,00       | -          | 3,00         | -           | 16,00       | 1,00          | 6,00        | 17,00  | -              | -        | 6,00       | -          | 11,00               | -       | -      | 65,00    |
| Molhação                         | Área (ha)        | -             | -               | 3,00           | *          | -          | *            | -           | 1,00        | *             | 4,00        | 8,00   | -              | -        | 0,00       | -          | 5,00                | -       | -      | 21,00    |
| Total                            | Estabelecimentos | 8,00          | 28,00           | 24,00          | 70,00      | 76,00      | 52,00        | 29,00       | 30,00       | 17,00         | 174,00      | 59,00  | 9,00           | 9,00     | 14,00      | 13,00      | 51,00               | 146,00  | 2,00   | 811,00   |
| iotai                            | Área (ha)        | 20,00         | 15,00           | 9,00           | 145,00     | 137,00     | 212,00       | 94,00       | 5,00        | 67,00         | 650,00      | 425,00 | 3,00           | 7,00     | 11,00      | 35,00      | 97,00               | 328,00  | *      | 2.260,00 |

Fonte: IBGE (2017).

Nota: \* dados de área indisponíveis.





#### 3.1.2.2 Área Plantada

A produção agrícola apresenta grande representatividade nas economias dos municípios estudados. Em relação às lavouras permanentes, a maçã, uva e laranja são os principais produtos, sendo que a uva produzida é destinada para a fabricação de vinho ou suco. Em relação à lavoura temporária, os principais produtos são a soja, milho, feijão e trigo, observando-se, também, monoculturas de eucalipto e pinus.

Segundo IBGE (2017), considerando as lavouras permanentes nos municípios estudados, as plantações de maçã ocupavam área total de 1.538 ha, seguidas pela cultura de uva, com 205 ha e a cultura de laranja, com 93 ha, conforme demonstra Tabela 3.11. Particularmente, Urubici (698 ha), Bom Retiro (592 ha) e Lages (315 ha) eram os municípios com maior área plantada de lavouras permanentes.

No que se refere às lavouras temporárias, as plantações de soja ocupavam área de 158.329 ha; as plantações de milho e milho-forrageiro abarcavam 47.157 ha; a cultura de feijão abrangia 19.586 ha e a cultura de trigo, 11.936 ha, como demonstrado na Tabela 3.12. Dentre as lavouras temporárias, os municípios de Campos Novos (79.632 ha), Palmeira (71.504 ha) e Curitibanos (19.732 ha) se destacaram em relação à área plantada.

Resumidamente, no âmbito geral dos municípios estudados, a área total plantada, incluindo lavouras permanentes e temporárias, abrangia 258.800 ha em 2017.





Tabela 3.11 - Área ocupada pelas lavouras permanentes nos municípios estudados dentro da bacia hidrográfica do rio Canoas.

| Mandaínia           |        | Lavouras Permanentes (ha) |          |       |           |         |       |      |         |           |     |               |  |  |  |
|---------------------|--------|---------------------------|----------|-------|-----------|---------|-------|------|---------|-----------|-----|---------------|--|--|--|
| Município           | Ameixa | Amora                     | Azeitona | Caqui | Erva-mate | Laranja | Maçã  | Pêra | Pêssego | Tangerina | Uva | Vinho ou succ |  |  |  |
| Abdon Batista       | -      | -                         | -        | 2     | -         | 48      | -     | -    | -       | 8         | -   | -             |  |  |  |
| Anita Garibaldi     | -      | -                         | -        | -     | -         | -       | -     | -    | -       | 3         | 13  | 4             |  |  |  |
| Bocaina do Sul      | -      | -                         | -        | -     | -         | -       | -     | -    | -       | -         | -   | -             |  |  |  |
| Bom Retiro          | 14     | 0                         | -        | -     | -         | -       | 477   | 88   | -       | -         | 13  | -             |  |  |  |
| Brunópolis          | -      | -                         | -        | -     | -         | -       | -     | -    | -       | -         | -   | -             |  |  |  |
| Campos Novos        | -      | -                         | -        | -     | 12        | -       | -     | -    | -       | -         | 7   | -             |  |  |  |
| Celso Ramos         | -      | -                         | -        | -     | -         | 45      | -     | -    | -       | -         | 34  | -             |  |  |  |
| Cerro Negro         | -      | -                         | -        | -     | -         | -       | -     | -    | -       | -         | 1   | -             |  |  |  |
| Correia Pinto       | -      | -                         | -        | -     | -         | -       | -     | -    | -       | -         |     | -             |  |  |  |
| Curitibanos         | -      | -                         | 1        | -     | -         | -       | -     | -    | -       | -         | 8   | 11            |  |  |  |
| Lages               | 7      | -                         | -        | 3     | -         | -       | 287   | -    | 5       | -         | 10  | 3             |  |  |  |
| Otacílio Costa      | -      | -                         | -        | -     | -         | -       | -     | -    | -       | -         | -   | -             |  |  |  |
| Palmeira            | -      | -                         | -        | -     | 28        | -       | 41    | -    | 23      | -         | 3   | 41            |  |  |  |
| Ponte Alta          | -      | 3                         | -        | -     | -         | -       | -     | -    | -       | -         | -   | -             |  |  |  |
| Rio Rufino          | -      | -                         | -        | -     | -         | -       | 120   | -    | -       | -         | -   | 33            |  |  |  |
| São José do Cerrito | -      | -                         | -        | -     | -         | -       | -     | -    | -       | -         | 1   | 2             |  |  |  |
| Urubici             | 39     | 17                        | -        | 6     | -         | -       | 613   | -    | 2       | -         | 3   | 18            |  |  |  |
| Vargem              | -      | -                         | -        | -     | -         | -       | -     | -    | -       | -         | -   | -             |  |  |  |
| Total               | 60     | 20                        | 1        | 11    | 40        | 93      | 1.538 | 88   | 30      | 11        | 93  | 112           |  |  |  |

Fonte: IBGE (2017).





Tabela 3.12 - Área ocupada pelas lavouras temporárias nos municípios estudados dentro da bacia hidrográfica do rio Canoas.

|                     |         |      |          |       |       |        |                    |        |         |        | Lavouras Ten | nporárias (ha) |       |          |          |       |        |                      |         |        |        |       |
|---------------------|---------|------|----------|-------|-------|--------|--------------------|--------|---------|--------|--------------|----------------|-------|----------|----------|-------|--------|----------------------|---------|--------|--------|-------|
| Município           | Abóbora | Alho | Amendoin | Arroz | Aveia | Batata | Cana-de-<br>açucar | Cebola | Centeio | Cevada | Ervilho      | Feijão         | Fumo  | Mandioca | Melancia | Melão | Milho  | Milho<br>Forragueiro | Soja    | Trigo  | Tomate | Sorgo |
| Abdon Batista       | 68      | -    | =        | -     | -     | -      | -                  | -      | -       | -      | -            | 115            | 271   | -        | 6        | -     | 1.536  | 196                  | 1.667   | -      | -      | -     |
| Anita Garibaldi     | -       | -    | -        | -     | 100   | -      | -                  | -      | -       | -      | -            | 462            | 24    | 6        | 2        | -     | 2.285  | 136                  | 1.653   | -      | -      | -     |
| Bocaina do Sul      | 23      | -    | -        | -     | -     | 13     | -                  | 7      | -       | -      | -            | 154            | 33    | 1        | -        | -     | 1.012  | 175                  | 628     | -      | -      | -     |
| Bom Retiro          | 101     | -    | -        | -     | -     | 8      | -                  | 588    | -       | -      | -            | 207            | 101   | 1        | 61       | -     | 1.328  | 382                  | 5.077   | 104    | -      | -     |
| Brunópolis          | -       | 133  | -        | -     | -     | -      | -                  | -      | -       | -      | -            | 694            | -     | -        | -        | -     | 1.699  | 64                   | 8.748   | 136    | -      | -     |
| Campos Novos        | 16      | 51   | -        | -     | 3.479 | 1      | -                  | 34     | -       | 729    | -            | 4.456          | 51    | 21       | 3        | -     | 10.791 | 1.315                | 52.924  | 5.729  | 2      | 30    |
| Celso Ramos         | 271     | -    | -        | -     | -     | -      | 19                 | -      | -       | -      | -            | 138            | 202   | 3        | 6        | -     | 1.293  | -                    | 741     | -      | -      | -     |
| Cerro Negro         | 147     | 0    | 0        | -     | -     | 0      | 0                  | 1      | -       | -      | 3            | 833            | 49    | 2        | 2        | 0     | 1.411  | -                    | 1.547   | -      | 0      | -     |
| Correia Pinto       | 115     | -    | =        | -     | -     | 65     | -                  | 2      | -       | -      | 1            | 218            | -     | 2        | 21       | 1     | 1.653  | 44                   | 2.115   | -      | -      | -     |
| Curitibanos         | 80      | 328  | -        | 6     | -     | 1      | -                  | 120    | -       | -      | -            | 1.447          | -     | 1        | 2        | 2.886 | 120    | -                    | 14.741  | -      | -      | -     |
| Lages               | 263     | 7    | -        | -     | 1.126 | 7      | -                  | 4      | -       | -      | 0            | 1.544          | -     | 1        | 9        | -     | 2.610  | 338                  | 7.807   | -      | -      | -     |
| Otacílio Costa      | 293     | -    | -        | -     | -     | -      | -                  | -      | -       | -      | -            | 93             | -     | 1        | 1        | -     | 1.546  | 105                  | 5.008   | -      | -      | -     |
| Palmeira            | 4       | 1    | 0        | -     | 1.134 | 177    | -                  | 22     | 103     | 800    | -            | 6.406          | 3.770 | 5        | 8        | -     | 6.503  | 1.475                | 45.121  | 5.967  | 8      | -     |
| Ponte Alta          | 331     | 24   | =        | -     | -     | 0      | -                  | 4      | -       | -      | -            | 141            | -     | 1        | 37       | -     | 956    | 51                   | 2.217   | -      | -      | -     |
| Rio Rufino          | 9       | -    | -        | -     | -     | 11     | -                  | 10     | -       | -      | -            | 61             | 406   | -        | -        | -     | 958    | 101                  | -       | -      | -      | -     |
| São José do Cerrito | 36      | -    | 1        | 16    | -     | 2      | -                  | 46     | -       | -      | 1            | 2.204          | 27    | 4        | 6        | -     | 3.970  | 172                  | 5.421   | -      | 1      | -     |
| Urubici             | 2       |      | =        | -     | -     | 30     | -                  | 178    | -       | -      | -            | 13             | 206   | =_       | -        | -     | 864    | 403                  | -       | -      | 13     | -     |
| Vargem              | 34      | -    | =        | -     | -     | 2      | -                  | -      | -       | =      | -            | 400            | 212   | 1        | -        | -     | 1.613  | 52                   | 2.914   | -      | -      | -     |
| Total               | 1.793   | 544  | 1        | 22    | 5.839 | 317    | 19                 | 1.016  | 103     | 1.529  | 5            | 19.586         | 5.352 | 50       | 164      | 2.887 | 42.148 | 5.009                | 158.329 | 11.936 | 24     | 30    |

Fonte: IBGE (2017).





## 3.1.2.3 Área Irrigada x Área Plantada

A partir da análise dos dados do censo agropecuário de 2017 (IBGE, 2017), identificou-se que 10,55% da área plantada no Brasil era irrigada. Para o mesmo ano, no estado de Santa Catarina, este índice era de 11,37%.

Como já mencionado, as áreas irrigadas dos municípios estudados totalizavam 2.260 ha e as áreas ocupadas por lavouras temporárias e permanentes abrangiam a extensão de 258.800 ha. Tendo como referência o ano de 2017, conclui-se, portanto, que apenas 0,87% da área plantada nos municípios era irrigada.

## 3.1.2.4 Áreas Irrigáveis

Segundo Atlas Irrigação (ANA, 2021c), o Brasil possui, atualmente, 5.291.476 ha de área irrigada e potencial total irrigável de 55.851.225 ha. O estado de Santa Catarina, em especial, apresenta 184.506 ha de área irrigada e 1.506.673 ha de potencial total de irrigação, cuja distribuição espacial é apresentada na Figura 3.8.

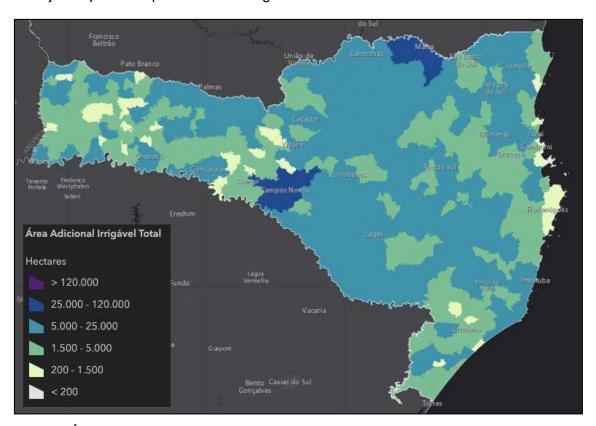



Figura 3.8 - Áreas irrigáveis no estado de Santa Catarina.

Fonte: ANA (2021c).

De maneira mais específica, a Tabela 3.13 demonstra as áreas irrigáveis totais para os municípios abarcados na área de estudo. Neste contexto, destacam-se as cidades de Campos Novos e Lages com as maiores áreas, totalizando 53.253 ha.





Tabela 3.13 - Áreas irrigáveis nos municípios avaliados.

| Município           | Área Irrigável Total (ha) |
|---------------------|---------------------------|
| Abdon Batista       | 4.467                     |
| Anita Garibaldi     | 8.017                     |
| Bocaina do Sul      | 5.569                     |
| Bom Retiro          | 17.686                    |
| Brunópolis          | 6.590                     |
| Campos Novos        | 31.288                    |
| Celso Ramos         | 5.195                     |
| Cerro Negro         | 5.652                     |
| Correia Pinto       | 9.332                     |
| Curitibanos         | 17.331                    |
| Lages               | 21.965                    |
| Otacílio Costa      | 9.788                     |
| Palmeira            | 3.002                     |
| Ponte Alta          | 7.605                     |
| Rio Rufino          | 3.758                     |
| São José do Cerrito | 16.030                    |
| Urubici             | 11.782                    |
| Vargem              | 6.428                     |
| Total               | 191.485                   |

Fonte: elaborado a partir de ANA (2021c).

### 3.1.2.5 Cadastro e Outorgas de Uso de Recursos Hídricos

Assim como para o abastecimento humano, para análise de cadastros e outorgas com finalidade de irrigação, o presente estudo valeu-se dos registros da SDE (2021a) e ANA (2021a).

Conforme já mencionado, a demanda total da área de estudo é 600,73 l/s (10,25% da vazão total destinada aos usos consuntivos), sendo dividida em 472 registros de usuários. Desses, os 30 registros com maior demanda de vazão para irrigação são apresentados na Tabela 3.14, com destaque para captação em poço raso no município de Lages que apontou vazão captada de 342,47 l/s (57,01% do total).





Tabela 3.14 - Maiores demandas para irrigação registradas na área de estudo.

| Registro     | Interferência                    | Município      | Vazão (I/s) |
|--------------|----------------------------------|----------------|-------------|
| Cadastro SDE | Poço raso                        | Lages          | 342,47      |
| Cadastro SDE | Açude                            | Campos Novos   | 92,05       |
| Cadastro SDE | Nascente                         | Vargem         | 40,87       |
| Cadastro SDE | Lago natural ou lagoa            | Curitibanos    | 11,42       |
| Cadastro SDE | Rio ou curso d'água              | Curitibanos    | 7,61        |
| Cadastro SDE | Açude                            | Curitibanos    | 3,81        |
| Cadastro SDE | Açude                            | Campos Novos   | 3,81        |
| Cadastro SDE | Açude                            | Curitibanos    | 3,81        |
| Cadastro SDE | Lago natural ou lagoa            | Curitibanos    | 3,81        |
| Outorga ANA  | Reservatório da UHE Campos Novos | Abdon Batista  | 3,61        |
| Cadastro SDE | Açude                            | Campos Novos   | 3,29        |
| Cadastro SDE | Lago natural ou lagoa            | Otacílio Costa | 2,96        |
| Cadastro SDE | Açude                            | Curitibanos    | 2,85        |
| Cadastro SDE | Açude                            | Curitibanos    | 2,36        |
| Cadastro SDE | Rio ou curso d'água              | Otacílio Costa | 2,28        |
| Cadastro SDE | Rio ou curso d'água              | Correia Pinto  | 1,98        |
| Cadastro SDE | Açude                            | Curitibanos    | 1,98        |
| Cadastro SDE | Açude                            | Curitibanos    | 1,71        |
| Cadastro SDE | Açude                            | Ponta Alta     | 1,54        |
| Cadastro SDE | Açude                            | Ponta Alta     | 1,54        |
| Cadastro SDE | Rio ou curso d'água              | Urubici        | 1,52        |
| Cadastro SDE | Poço profundo                    | Curitibanos    | 1,51        |
| Cadastro SDE | Rio ou curso d'água              | Urubici        | 1,48        |
| Cadastro SDE | Açude                            | Ponta Alta     | 1,37        |
| Cadastro SDE | Rio ou curso d'água              | Urubici        | 1,22        |
| Cadastro SDE | Açude                            | Campos Novos   | 1,18        |
| Cadastro SDE | Poço profundo                    | Curitibanos    | 0,91        |
| Cadastro SDE | Nascente                         | Campos Novos   | 0,76        |
| Cadastro SDE | Açude                            | Urubici        | 0,76        |
| Cadastro SDE | Rio ou curso d'água              | Curitibanos    | 0,74        |

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).

A Tabela 3.15 demonstra, por município, as respectivas demandas hídricas para irrigação. Destaca-se como maior consumidor, assim como para o abastecimento público, o município de Lages, apresentando demanda de 343,55 l/s, seguido do município de Campos Novos, com 101,62 l/s.





Tabela 3.15 - Demanda hídrica para irrigação por município.

| Município           | N <sup>o</sup> de captações | Vazão (I/s) | % da vazão |
|---------------------|-----------------------------|-------------|------------|
| Abdon Batista       | 2                           | 3,67        | 0,61%      |
| Anita Garibaldi     | 0                           | 0,00        | 0,00%      |
| Bocaina do Sul      | 17                          | 0,41        | 0,07%      |
| Bom Retiro          | 44                          | 2,77        | 0,46%      |
| Brunópolis          | 43                          | 6,60        | 1,10%      |
| Campos Novos        | 18                          | 101,62      | 16,92%     |
| Celso Ramos         | 5                           | 0,23        | 0,04%      |
| Cerro Negro         | 0                           | 0,00        | 0,00%      |
| Correia Pinto       | 6                           | 2,47        | 0,41%      |
| Curitibanos         | 158                         | 58,59       | 9,75%      |
| Lages               | 18                          | 343,55      | 57,19%     |
| Otacílio Costa      | 5                           | 6,05        | 1,01%      |
| Palmeira            | 3                           | 0,22        | 0,04%      |
| Ponta Alta          | 9                           | 5,08        | 0,85%      |
| Rio Rufino          | 24                          | 3,96        | 0,66%      |
| São José do Cerrito | 5                           | 0,42        | 0,07%      |
| Urubici             | 111                         | 23,95       | 3,99%      |
| Vargem              | 4                           | 41,14       | 6,85%      |
| Total               | 472                         | 600,73      | 100,00%    |

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).

# 3.1.2.5.1 Demanda Superficial

Conforme Tabela 3.16, de toda a demanda hídrica para irrigação, 34,54 % (207,47 l/s) provêm de captações superficiais, destacando-se o município de Campos Novos, cuja captação representa 48,47% desse valor.





Tabela 3.16 - Demanda hídrica superficial para irrigação por município.

| Município           | Nº de captações | Vazão (I/s) | % da vazão |
|---------------------|-----------------|-------------|------------|
| Abdon Batista       | 2               | 3,67        | 1,77%      |
| Anita Garibaldi     | 0               | 0,00        | 0,00%      |
| Bocaina do Sul      | 9               | 0,25        | 0,12%      |
| Bom Retiro          | 34              | 1,89        | 0,91%      |
| Brunópolis          | 41              | 6,47        | 3,12%      |
| Campos Novos        | 12              | 100,57      | 48,47%     |
| Celso Ramos         | 5               | 0,23        | 0,11%      |
| Cerro Negro         | 0               | 0,00        | 0,00%      |
| Correia Pinto       | 3               | 2,02        | 0,97%      |
| Curitibanos         | 129             | 52,98       | 25,54%     |
| Lages               | 8               | 0,42        | 0,20%      |
| Otacílio Costa      | 4               | 5,86        | 2,82%      |
| Palmeira            | 3               | 0,22        | 0,11%      |
| Ponta Alta          | 7               | 4,69        | 2,26%      |
| Rio Rufino          | 19              | 3,95        | 1,90%      |
| São José do Cerrito | 4               | 0,32        | 0,16%      |
| Urubici             | 107             | 23,91       | 11,53%     |
| Vargem              | 1               | 0,02        | 0,01%      |
| Total               | 388             | 207,47      | 100,00%    |

Fonte: elaborado a partir de ANA (2021a) a e SDE (2021a).

### 3.1.2.5.2 <u>Demanda Subterrânea</u>

No que se refere à captação subterrânea para irrigação, a vazão total é de 393,26 l/s (65,46% do total), sendo que 87,25 % (343,13 l/s), como apresentado na Tabela 3.17, são destinados à cidade de Lages, com maior parte da vazão para irrigação proveniente de recursos subterrâneos.





Tabela 3.17 - Demandas hídricas subterrâneas para irrigação por município.

| Município           | N <sup>o</sup> de captações | Vazão (I/s) | % da vazão |
|---------------------|-----------------------------|-------------|------------|
| Abdon Batista       | 0                           | 0,00        | 0,00%      |
| Anita Garibaldi     | 0                           | 0,00        | 0,00%      |
| Bocaina do Sul      | 8                           | 0,16        | 0,04%      |
| Bom Retiro          | 10                          | 0,89        | 0,23%      |
| Brunópolis          | 2                           | 0,14        | 0,03%      |
| Campos Novos        | 6                           | 1,05        | 0,27%      |
| Celso Ramos         | 0                           | 0,00        | 0,00%      |
| Cerro Negro         | 0                           | 0,00        | 0,00%      |
| Correia Pinto       | 3                           | 0,45        | 0,11%      |
| Curitibanos         | 29                          | 5,61        | 1,43%      |
| Lages               | 10                          | 343,13      | 87,25%     |
| Otacílio Costa      | 1                           | 0,19        | 0,05%      |
| Palmeira            | 0                           | 0,00        | 0,00%      |
| Ponta Alta          | 2                           | 0,39        | 0,10%      |
| Rio Rufino          | 5                           | 0,01        | 0,00%      |
| São José do Cerrito | 1                           | 0,09        | 0,02%      |
| Urubici             | 4                           | 0,03        | 0,01%      |
| Vargem              | 3                           | 41,11       | 10,45%     |
| Total               | 84                          | 393,26      | 100,00%    |

Fonte: elaborado a partir de ANA (2021a) a e SDE (2021a).

#### 3.1.3 Uso Industrial

De acordo com SDE (2017), no estado de Santa Catarina, a demanda hídrica industrial era responsável pela segunda maior parcela da demanda total. Dentro da área de estudo, especificamente, tendo como referência ANA (2021a) e SDE (2021a), as vazões registradas para fins de consumo industrial totalizam 1.061,70 l/s, representando 18,11% da demanda total na área.

Nos municípios em análise, a indústria da transformação apresenta-se como destaque, tanto em relação ao percentual de empresas existentes, quanto em relação ao pessoal ocupado. Além disso, os setores extrativista e de construção demonstram-se representativos na região, conforme demonstrado detalhadamente no componente-síntese Base Econômica, disponível no Volume I - Diagnóstico Socioambiental da AIBH em tela.

Localmente, durante visita de campo, foram identificadas inúmeras madeireiras, com amplo cultivo de pinus e eucalipto. Esses insumos são absorvidos, majoritariamente, pela indústria de papel e celulose materializada na região, com destaque para a Klabin (maior produtora e exportadora brasileira de papéis para embalagens), demonstrada na Figura 3.9.









Figura 3.9 - Atividades industriais.

Nota: A - Madeireira; B - Unidade da Klabin.

### 3.1.3.1 Cadastro e Outorgas de Uso de Recursos Hídricos

Para a presente avaliação, foram enquadradas as demandas hídricas de atividades de mineração e produção de energia termoelétrica, também, como finalidade industrial. Assim sendo, a Tabela 3.18 apresenta a relação dos registros de usuários com finalidade industrial na área de estudo. Em destaque, citam-se as outorgas deferidas pela ANA para a empresa Klabin S.A., detentora de duas captações diretamente do rio Canoas, com vazões de retirada de 333,33 l/s cada, localizadas nos municípios de Otacílio Costa e Ponta Alta.

Avaliou-se, ainda, a demanda hídrica para uso industrial por município. Nesta análise, resumida na Tabela 3.19, sobressaíram-se os municípios de Ponta Alta, Otacílio Costa e Lages, que representam, juntos, 91,22% da vazão total destinada para as indústrias da região avaliada.





Tabela 3.18 - Usos para uso industrial registrados na área de estudo.

| Registro     | Interferência       | Município      | Vazão (I/s) |
|--------------|---------------------|----------------|-------------|
| Outorga ANA  | Rio ou curso d'água | Otacílio Costa | 333,33      |
| Outorga ANA  | Rio ou curso d'água | Ponta Alta     | 13,89       |
| Outorga ANA  | Rio ou curso d'água | Ponta Alta     | 333,33      |
| Cadastro SDE | Poço profundo       | Bom Retiro     | 0,47        |
| Cadastro SDE | Açude               | Bom Retiro     | 0,46        |
| Cadastro SDE | Rio ou curso d'água | Campos Novos   | 31,51       |
| Cadastro SDE | Poço profundo       | Campos Novos   | 1,14        |
| Cadastro SDE | Poço profundo       | Campos Novos   | 0,51        |
| Cadastro SDE | Poço profundo       | Campos Novos   | 0,36        |
| Cadastro SDE | Poço profundo       | Campos Novos   | 0,09        |
| Cadastro SDE | Poço profundo       | Campos Novos   | 0,08        |
| Cadastro SDE | Poço raso           | Campos Novos   | 0,08        |
| Cadastro SDE | Poço profundo       | Campos Novos   | 0,01        |
| Cadastro SDE | Poço profundo       | Correia Pinto  | 0,84        |
| Cadastro SDE | Poço profundo       | Correia Pinto  | 0,20        |
| Cadastro SDE | Rede pública        | Correia Pinto  | 0,05        |
| Cadastro SDE | Poço raso           | Correia Pinto  | 0,01        |
| Cadastro SDE | Poço raso           | Correia Pinto  | 0,01        |
| Cadastro SDE | Poço profundo       | Curitibanos    | 3,31        |
| Cadastro SDE | Poço profundo       | Curitibanos    | 0,77        |
| Cadastro SDE | Poço profundo       | Curitibanos    | 0,53        |
| Cadastro SDE | Poço profundo       | Curitibanos    | 0,23        |
| Cadastro SDE | Poço profundo       | Curitibanos    | 0,23        |
| Cadastro SDE | Poço raso           | Curitibanos    | 0,20        |
| Cadastro SDE | Poço profundo       | Curitibanos    | 0,06        |
| Cadastro SDE | Rede pública        | Curitibanos    | 0,04        |
| Cadastro SDE | Poço profundo       | Curitibanos    | 0,04        |
| Cadastro SDE | Rede pública        | Curitibanos    | 0,02        |
| Cadastro SDE | Rio ou curso d'água | Lages          | 142,47      |
| Cadastro SDE | Rio ou curso d'água | Lages          | 25,00       |
| Cadastro SDE | Rio ou curso d'água | Lages          | 19,03       |
| Cadastro SDE | Poço profundo       | Lages          | 16,67       |
| Cadastro SDE | Poço profundo       | Lages          | 3,33        |
| Cadastro SDE | Rio ou curso d'água | Lages          | 3,14        |
| Cadastro SDE | Poço profundo       | Lages          | 1,71        |
| Cadastro SDE | Poço profundo       | Lages          | 1,52        |
| Cadastro SDE | Poço profundo       | Lages          | 1,51        |
| Cadastro SDE | Poço profundo       | Lages          | 1,48        |
| Cadastro SDE | Poço profundo       | Lages          | 1,40        |
| Cadastro SDE | Poço profundo       | Lages          | 1,03        |
| Cadastro SDE | Poço profundo       | Lages          | 0,97        |
| Cadastro SDE | Poço profundo       | Lages          | 0,90        |
| Cadastro SDE | Poço profundo       | Lages          | 0,77        |

Continua...





Continuação

| Registro     | Interferência         | Município           | Vazão (I/s) |
|--------------|-----------------------|---------------------|-------------|
| Cadastro SDE | Poço profundo         | Lages               | 0,69        |
| Cadastro SDE | Poço profundo         | Lages               | 0,60        |
| Cadastro SDE | Poço profundo         | Lages               | 0,60        |
| Cadastro SDE | Poço profundo         | Lages               | 0,54        |
| Cadastro SDE | Poço profundo         | Lages               | 0,46        |
| Cadastro SDE | Rede pública          | Lages               | 0,40        |
| Cadastro SDE | Poço profundo         | Lages               | 0,39        |
| Cadastro SDE | Poço profundo         | Lages               | 0,37        |
| Cadastro SDE | Poço profundo         | Lages               | 0,37        |
| Cadastro SDE | Poço profundo         | Lages               | 0,35        |
| Cadastro SDE | Poço profundo         | Lages               | 0,33        |
| Cadastro SDE | Poço profundo         | Lages               | 0,27        |
| Cadastro SDE | Poço profundo         | Lages               | 0,26        |
| Cadastro SDE | Poço profundo         | Lages               | 0,25        |
| Cadastro SDE | Poço profundo         | Lages               | 0,15        |
| Cadastro SDE | Poço profundo         | Lages               | 0,14        |
| Cadastro SDE | Poço profundo         | Lages               | 0,11        |
| Cadastro SDE | Rede pública          | Lages               | 0,08        |
| Cadastro SDE | Poço profundo         | Lages               | 0,06        |
| Cadastro SDE | Poço profundo         | Lages               | 0,06        |
| Cadastro SDE | Rede pública          | Lages               | 0,04        |
| Cadastro SDE | Rede pública          | Lages               | 0,04        |
| Cadastro SDE | Poço profundo         | Lages               | 0,04        |
| Cadastro SDE | Poço raso             | Lages               | 0,01        |
| Cadastro SDE | Poço profundo         | Otacílio Costa      | 8,22        |
| Cadastro SDE | Poço profundo         | Otacílio Costa      | 0,17        |
| Cadastro SDE | Rede pública          | Otacílio Costa      | 0,02        |
| Cadastro SDE | Poço profundo         | Palmeira            | 1,09        |
| Cadastro SDE | Poço profundo         | Palmeira            | 0,46        |
| Cadastro SDE | Poço profundo         | Palmeira            | 0,04        |
| Cadastro SDE | Poço profundo         | Palmeira            | 0,02        |
| Cadastro SDE | Rio ou curso d'água   | Palmeira            | 0,00        |
| Cadastro SDE | Rio ou curso d'água   | Ponta Alta          | 11,15       |
| Cadastro SDE | Lago natural ou lagoa | Ponta Alta          | 0,07        |
| Cadastro SDE | Rio ou curso d'água   | Bocaina do Sul      | 0,55        |
| Cadastro SDE | Nascente              | Campos Novos        | 0,03        |
| Cadastro SDE | Rio ou curso d'água   | Correia Pinto       | 0,57        |
| Cadastro SDE | Rio ou curso d'água   | Lages               | 38,36       |
| Cadastro SDE | Poço profundo         | Lages               | 0,15        |
| Cadastro SDE | Rio ou curso d'água   | Otacílio Costa      | 0,55        |
| Cadastro SDE | Rio ou curso d'água   | Ponta Alta          | 1,64        |
| Cadastro SDE | Rio ou curso d'água   | São José do Cerrito | 49,32       |

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).





Tabela 3.19 - Demanda hídrica para uso industrial por município.

| Município           | N <sup>o</sup> de captações | Vazão (I/s) | % da vazão |
|---------------------|-----------------------------|-------------|------------|
| Abdon Batista       | 0                           | 0,00        | 0,00%      |
| Anita Garibaldi     | 0                           | 0,00        | 0,00%      |
| Bocaina do Sul      | 1                           | 0,55        | 0,05%      |
| Bom Retiro          | 2                           | 0,94        | 0,09%      |
| Brunópolis          | 0                           | 0,00        | 0,00%      |
| Campos Novos        | 9                           | 33,80       | 3,18%      |
| Celso Ramos         | 0                           | 0,00        | 0,00%      |
| Cerro Negro         | 0                           | 0,00        | 0,00%      |
| Correia Pinto       | 6                           | 1,67        | 0,16%      |
| Curitibanos         | 10                          | 5,42        | 0,51%      |
| Lages               | 41                          | 266,03      | 25,06%     |
| Otacílio Costa      | 5                           | 342,29      | 32,24%     |
| Palmeira            | 5                           | 1,60        | 0,15%      |
| Ponta Alta          | 5                           | 360,08      | 33,92%     |
| Rio Rufino          | 0                           | 0,00        | 0,00%      |
| São José do Cerrito | 1                           | 49,32       | 4,64%      |
| Urubici             | 0                           | 0,00        | 0,00%      |
| Vargem              | 0                           | 0,00        | 0,00%      |
| Total               | 85                          | 1.061,70    | 100,00%    |

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).

## 3.1.3.1.1 Demanda Superficial

De toda a demanda hídrica para uso industrial, conforme Tabela 3.20, 94,66% (1.005,05 l/s) provêm de captações superficiais, destacando-se, novamente, os municípios de Ponta Alta, Otacílio Costa e Lages, cujas captações somadas representam 922,53 l/s.





Tabela 3.20 - Demandas hídricas superficiais para uso industrial por município.

| Município           | Nº de captações | Vazão (I/s) | % da vazão |
|---------------------|-----------------|-------------|------------|
| Abdon Batista       | 0               | 0,00        | 0,00%      |
| Anita Garibaldi     | 0               | 0,00        | 0,00%      |
| Bocaina do Sul      | 1               | 0,55        | 0,05%      |
| Bom Retiro          | 1               | 0,46        | 0,05%      |
| Brunópolis          | 0               | 0,00        | 0,00%      |
| Campos Novos        | 1               | 31,51       | 3,13%      |
| Celso Ramos         | 0               | 0,00        | 0,00%      |
| Cerro Negro         | 0               | 0,00        | 0,00%      |
| Correia Pinto       | 2               | 0,62        | 0,06%      |
| Curitibanos         | 2               | 0,06        | 0,01%      |
| Lages               | 9               | 228,54      | 22,74%     |
| Otacílio Costa      | 3               | 333,91      | 33,22%     |
| Palmeira            | 1               | 0,00        | 0,00%      |
| Ponta Alta          | 5               | 360,08      | 35,83%     |
| Rio Rufino          | 0               | 0,00        | 0,00%      |
| São José do Cerrito | 1               | 49,32       | 4,91%      |
| Urubici             | 0               | 0,00        | 0,00%      |
| Vargem              | 0               | 0,00        | 0,00%      |
| Total               | 26              | 1.005,05    | 100,00%    |

Fonte: elaborado a partir de ANA (2021a) a e SDE (2021a).

## 3.1.3.1.2 <u>Demanda Subterrânea</u>

No que se refere à captação subterrânea para uso industrial, a vazão total é de apenas 56,65 l/s, que corresponde a 5,34% do total. Dessa vazão, 66,17% (37,49 l/s) são destinadas à cidade de Lages, como apresentado na Tabela 3.21.





Tabela 3.21 - Demandas hídricas subterrâneas para uso industrial por município.

| Município           | N <sup>o</sup> de captações | Vazão (I/s) | % da vazão |
|---------------------|-----------------------------|-------------|------------|
| Abdon Batista       | 0                           | 0,00        | 0,00%      |
| Anita Garibaldi     | 0                           | 0,00        | 0,00%      |
| Bocaina do Sul      | 0                           | 0,00        | 0,00%      |
| Bom Retiro          | 1                           | 0,47        | 0,83%      |
| Brunópolis          | 0                           | 0,00        | 0,00%      |
| Campos Novos        | 8                           | 2,29        | 4,05%      |
| Celso Ramos         | 0                           | 0,00        | 0,00%      |
| Cerro Negro         | 0                           | 0,00        | 0,00%      |
| Correia Pinto       | 4                           | 1,05        | 1,85%      |
| Curitibanos         | 8                           | 5,36        | 9,46%      |
| Lages               | 32                          | 37,49       | 66,17%     |
| Otacílio Costa      | 2                           | 8,39        | 14,80%     |
| Palmeira            | 4                           | 1,60        | 2,83%      |
| Ponta Alta          | 0                           | 0,00        | 0,00%      |
| Rio Rufino          | 0                           | 0,00        | 0,00%      |
| São José do Cerrito | 0                           | 0,00        | 0,00%      |
| Urubici             | 0                           | 0,00        | 0,00%      |
| Vargem              | 0                           | 0,00        | 0,00%      |
| Total               | 59                          | 56,65       | 100,00%    |

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).

### 3.1.4 Criação de Animais

Nos municípios estudados, de acordo com IBGE (2020), a soma da criação de galináceos representou 2,44% do valor total da produção estadual no ano de 2019. No mesmo ano, a produção de bovinos, por sua vez, apontou 11,22% e a produção de suínos 2,73%.

Além dos galináceos e bovinos, existiam, nos municípios analisados, a criação de bubalinos, equinos, caprinos, ovinos e codornas, conforme demonstra a Tabela 3.22. Assim como para o estado de Santa Catarina, na área de estudo, as tipologias com maior número de animais eram: galináceos (80,4%), bovinos (12,6%) e suínos (5,2%).





Tabela 3.22 - Número de animais por espécie e por município.

| Município           | Bovino  | Bubalino | Equino | Suíno   | Caprino | Ovino  | Galináceos | Codornas |
|---------------------|---------|----------|--------|---------|---------|--------|------------|----------|
| Abdon Batista       | 14.875  | 0        | 137    | 3.750   | 61      | 173    | 11.450     | 0        |
| Anita Garibaldi     | 35.000  | 11       | 1.155  | 4.300   | 155     | 2.200  | 35.000     | 280      |
| Bocaina do Sul      | 17.000  | 20       | 1.065  | 1.250   | 85      | 1.200  | 11.200     | 30       |
| Bom Retiro          | 26.500  | 4        | 1.400  | 1.250   | 160     | 5.350  | 252.000    | 50       |
| Brunópolis          | 12.347  | 0        | 288    | 7.125   | 47      | 726    | 10.684     | 0        |
| Campos Novos        | 61.050  | 28       | 1.118  | 126.450 | 260     | 7.300  | 1.758.600  | 0        |
| Celso Ramos         | 12.093  | 0        | 201    | 2.180   | 102     | 133    | 11.700     | 0        |
| Cerro Negro         | 17.000  | 7        | 600    | 3.800   | 120     | 800    | 19.000     | 40       |
| Correia Pinto       | 30.000  | 4        | 1.500  | 2.300   | 170     | 1.700  | 366.245    | 20       |
| Curitibanos         | 34.586  | 33       | 902    | 37.621  | 96      | 4.785  | 23.678     | 107      |
| Lages               | 89.000  | 172      | 6.000  | 2.600   | 76      | 10.600 | 256.000    | 600      |
| Otacílio Costa      | 18.000  | 3        | 520    | 2.600   | 46      | 1.250  | 9.000      | 40       |
| Palmeira            | 11.250  | 36       | 510    | 860     | 10      | 1.200  | 9.000      | 35       |
| Ponta Alta          | 15.100  | 0        | 515    | 1.042   | 62      | 1.231  | 328.500    | 87       |
| Rio Rufino          | 9.000   | 0        | 445    | 1.200   | 60      | 420    | 6.000      | 0        |
| São José do Cerrito | 46.000  | 14       | 1.440  | 6.350   | 240     | 3.200  | 56.000     | 60       |
| Urubici             | 36.000  | 212      | 1.800  | 920     | 110     | 1.200  | 6.200      | 20       |
| Vargem              | 14.746  | 25       | 260    | 1.760   | 28      | 400    | 13.600     | 0        |
| Total               | 499.547 | 569      | 19.856 | 207.358 | 1.888   | 43.868 | 3.183.857  | 1.369    |

Fonte: elaborado a partir de IBGE (2020).





Durante as atividades de campo, registrou-se que a prática da pecuária bovina é corriqueira na área em análise. Foram identificadas, conforme Figura 3.10, diversas áreas de pastagem e presença de gado nas proximidades das margens do rio Canoas e de seus afluentes, indicando que o uso da água para dessedentação animal é recorrente.







Figura 3.10 - Registros de criação animal e áreas de pastagem.

Nota: A e B - Área de pastagem, no município de Urubici; C - Área de pastagem, no município de Correia Pinto.

## 3.1.4.1 Cadastro e Outorgas de Uso de Recursos Hídricos

De todos os usos da água levantados para a área de estudo, considerando os cadastros da SDE (2021a) e as outorgas de direito de uso de recursos hídricos da ANA (2021a), a criação animal se mostrou mais relevante, tanto em número de registros quanto em vazão demandada. Ao total foram contabilizados 2.073 registros, correspondendo à demanda hídrica de 1.166 l/s, o que representa 19,90% de todo o consumo na área de estudo.

A Tabela 3.23 demonstra os 30 registros levantados com maior consumo. Nesta análise, destaca-se um (1) registro no município de Brunópolis com vazão de 616,44 l/s, representando 52,85% do total registrado para a finalidade em tela.





Tabela 3.23 - Maiores demandas para irrigação registradas na área de estudo.

| Registro     | Interferência         | Município           | Vazão (I/s) |
|--------------|-----------------------|---------------------|-------------|
| Cadastro SDE | Rio ou curso d'água   | Brunópolis          | 616,44      |
| Cadastro SDE | Nascente              | Urubici             | 136,99      |
| Cadastro SDE | Nascente              | Anita Garibaldi     | 45,37       |
| Cadastro SDE | Nascente              | Brunópolis          | 29,00       |
| Cadastro SDE | Nascente              | Anita Garibaldi     | 24,66       |
| Cadastro SDE | Nascente              | São José do Cerrito | 20,55       |
| Cadastro SDE | Lago natural ou lagoa | Anita Garibaldi     | 19,03       |
| Cadastro SDE | Lago natural ou lagoa | São José do Cerrito | 19,03       |
| Cadastro SDE | Rio ou curso d'água   | Campos Novos        | 18,39       |
| Cadastro SDE | Nascente              | Brunópolis          | 14,00       |
| Cadastro SDE | Nascente              | Brunópolis          | 13,00       |
| Cadastro SDE | Nascente              | Campos Novos        | 11,00       |
| Cadastro SDE | Nascente              | Vargem              | 11,00       |
| Cadastro SDE | Nascente              | Vargem              | 10,00       |
| Cadastro SDE | Nascente              | Campos Novos        | 7,00        |
| Cadastro SDE | Nascente              | Vargem              | 7,00        |
| Cadastro SDE | Nascente              | Campos Novos        | 6,00        |
| Cadastro SDE | Nascente              | Abdon Batista       | 5,71        |
| Cadastro SDE | Rio ou curso d'água   | Palmeira            | 4,95        |
| Cadastro SDE | Poço profundo         | Curitibanos         | 4,76        |
| Cadastro SDE | Nascente              | Vargem              | 4,74        |
| Cadastro SDE | Nascente              | Correia Pinto       | 3,81        |
| Cadastro SDE | Rio ou curso d'água   | Palmeira            | 3,81        |
| Cadastro SDE | Lago natural ou lagoa | Otacílio Costa      | 3,81        |
| Cadastro SDE | Rede pública          | Rio Rufino          | 3,81        |
| Cadastro SDE | Nascente              | Brunópolis          | 3,00        |
| Cadastro SDE | Nascente              | Campos Novos        | 3,00        |
| Cadastro SDE | Nascente              | Campos Novos        | 3,00        |
| Cadastro SDE | Nascente              | Campos Novos        | 3,00        |
| Cadastro SDE | Nascente              | Vargem              | 3,00        |

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).

No que se refere ao consumo por município, a Tabela 3.24 demonstra as respectivas demandas. Destacam-se os municípios de Brunópolis e Urubici, que totalizam demanda hídrica de 820,62 l/s, correspondendo a 70,36% do total para a finalidade de criação animal.





Tabela 3.24 - Demanda hídrica para criação animal por município.

| Município           | Nº de captações | Vazão (I/s) | % da vazão |  |
|---------------------|-----------------|-------------|------------|--|
| Abdon Batista       | 142             | 10,31       | 0,88%      |  |
| Anita Garibaldi     | 249             | 95,71       | 8,21%      |  |
| Bocaina do Sul      | 97              | 1,59        | 0,14%      |  |
| Bom Retiro          | 105             | 7,57        | 0,65%      |  |
| Brunópolis          | 47              | 680,79      | 58,37%     |  |
| Campos Novos        | 163             | 75,69       | 6,49%      |  |
| Celso Ramos         | 39              | 0,73        | 0,06%      |  |
| Cerro Negro         | 108             | 2,06        | 0,18%      |  |
| Correia Pinto       | 232             | 17,21       | 1,48%      |  |
| Curitibanos         | 169             | 18,40       | 1,58%      |  |
| Lages               | 67              | 6,17        | 0,53%      |  |
| Otacílio Costa      | 66              | 6,67        | 0,57%      |  |
| Palmeira            | 26              | 9,44        | 0,81%      |  |
| Ponta Alta          | 98              | 5,08        | 0,44%      |  |
| Rio Rufino          | 26              | 4,26        | 0,37%      |  |
| São José do Cerrito | 333             | 48,15       | 4,13%      |  |
| Urubici             | 68              | 139,83      | 11,99%     |  |
| Vargem              | 38              | 36,71       | 3,15%      |  |
| Total               | 2.073           | 1.166,39    | 100,00%    |  |

Fonte: elaborado a partir de ANA (2021a) e SDE (2021a).

## 3.1.4.1.1 Demanda Superficial

De toda a demanda hídrica para a criação animal, conforme Tabela 3.24, 61,53% (717,63 l/s) provêm de captações superficiais, destacando-se, novamente, o município de Brunópolis, cuja captação representa 86,46% deste valor.





Tabela 3.25 - Demandas hídricas superficiais para criação animal por município.

| Município           | Nº de captações | Vazão (I/s) | % da vazão |  |  |
|---------------------|-----------------|-------------|------------|--|--|
| Abdon Batista       | 23              | 0,33        | 0,05%      |  |  |
| Anita Garibaldi     | 29              | 20,02       | 2,79%      |  |  |
| Bocaina do Sul      | 68              | 0,99        | 0,14%      |  |  |
| Bom Retiro          | 43              | 2,54        | 0,35%      |  |  |
| Brunópolis          | 15              | 620,45      | 86,46%     |  |  |
| Campos Novos        | 14              | 19,14       | 2,67%      |  |  |
| Celso Ramos         | 10              | 0,15        | 0,02%      |  |  |
| Cerro Negro         | 61              | 1,39        | 0,19%      |  |  |
| Correia Pinto       | 22              | 0,35        | 0,05%      |  |  |
| Curitibanos         | 128             | 6,04        | 0,84%      |  |  |
| Lages               | 25              | 4,51        | 0,63%      |  |  |
| Otacílio Costa      | 23              | 5,43        | 0,76%      |  |  |
| Palmeira            | 4               | 8,76        | 1,22%      |  |  |
| Ponta Alta          | 29              | 2,00        | 0,28%      |  |  |
| Rio Rufino          | 13              | 3,98        | 0,55%      |  |  |
| São José do Cerrito | 50              | 20,55       | 2,86%      |  |  |
| Urubici             | 26              | 0,61        | 0,09%      |  |  |
| Vargem              | 7               | 0,38        | 0,05%      |  |  |
| Total               | 590             | 717,63      | 100,00%    |  |  |

Fonte: elaborado a partir de ANA (2021a) a e SDE (2021a).

## 3.1.4.1.2 Demanda Subterrânea

No que se refere à captação subterrânea para criação animal, conforme Tabela 3.25, a vazão total é de 448,75 l/s, que representa 38,47% do total captado. Nesta avaliação, destacam-se os municípios de Urubici, Anita Garibaldi, Brunópolis e Campos Novos que, juntos, representam 73,94% da demanda subterrânea para criação animal.





Tabela 3.26 - Demandas hídricas subterrâneas para criação animal por município.

| Município           | Nº de captações | Vazão (I/s) | % da vazão |  |  |
|---------------------|-----------------|-------------|------------|--|--|
| Abdon Batista       | 119             | 9,98        | 2,22%      |  |  |
| Anita Garibaldi     | 220             | 75,69       | 16,87%     |  |  |
| Bocaina do Sul      | 29              | 0,61        | 0,13%      |  |  |
| Bom Retiro          | 62              | 5,03        | 1,12%      |  |  |
| Brunópolis          | 32              | 60,34       | 13,45%     |  |  |
| Campos Novos        | 149             | 56,55       | 12,60%     |  |  |
| Celso Ramos         | 29              | 0,58        | 0,13%      |  |  |
| Cerro Negro         | 47              | 0,67        | 0,15%      |  |  |
| Correia Pinto       | 210             | 16,86       | 3,76%      |  |  |
| Curitibanos         | 41              | 12,36       | 2,75%      |  |  |
| Lages               | 42              | 1,66        | 0,37%      |  |  |
| Otacílio Costa      | 43              | 1,24        | 0,28%      |  |  |
| Palmeira            | 22              | 0,68        | 0,15%      |  |  |
| Ponta Alta          | 69              | 3,09        | 0,69%      |  |  |
| Rio Rufino          | 13              | 0,28        | 0,06%      |  |  |
| São José do Cerrito | 283             | 27,60       | 6,15%      |  |  |
| Urubici             | 42              | 139,21      | 31,02%     |  |  |
| Vargem              | 31              | 36,33       | 8,10%      |  |  |
| Total               | 1.483           | 448,75      | 100,00%    |  |  |

Fonte: elaborado a partir de ANA (2021a) a e SDE (2021a).

#### 3.2 **Usos Não Consuntivos**

### Geração de Energia e Regularização de Vazões

De acordo com Aneel (2021), o estado de Santa Catarina apresenta 258 empreendimentos hidrelétricos em operação, totalizando potência instalada de 3.444.499,03 kW (3,44 GW). Além disso, existem 25 projetos em fase de estudos, licenciamento e/ou construção, sendo a grande maioria de Pequenas Centrais Hidrelétricas (PCH).

Segundo SDE (2017), a Região Hidrográfica do Planalto das Lages (RH4), onde se localiza a área de estudo, possui a maior potência instalada dentre as regiões hidrográficas catarinenses, com 1.826.014 KW (1,8 GW).

No que se refere à geração energética, especificamente na área de estudo, ainda segundo Aneel (2021), existem, atualmente, cinco (5) empreendimentos no rio Canoas, sendo três (3) Usinas Hidrelétricas (UHE), duas já em operação e uma em construção, e duas PCHs, ambas em operação. Tais empreendimentos são listados e descritos a seguir, estando alguns deles apresentados na Figura 3.11.

 UHE Campos Novos, localizada nos municípios de Campos Novos, Celso Ramos, Anita Garibaldi e Abdon Batista. Com potência equivalente a 880 MW, esta UHE é de propriedade da Campos Novos Energia S/A (Enercan).





- UHE Garibaldi, localizada no município de Abdon Batista. Com potência instalada equivalente a 175 MW, esta UHE é de responsabilidade da Desenvix S.A..
- UHE São Roque, localizada no município de São José do Cerrito. Esta UHE se encontra em construção e terá potência instalada de 135 MW. É de responsabilidade da Desenvix S.A..
- PCH Ado Popinhak, localizada nos municípios de Curitibanos e Correia Pinto. Com potência instalada equivalente a 19,3 MW, esta PCH é de propriedade da Magma Energia S.A, holding controladora da Companhia Energética Canoas S.A..
- PCH Pery, localizada no município de Curitibanos. Com potência equivalente a 30 MW, é de responsabilidade da Centrais Elétricas de Santa Catarina S.A. (Celesc).

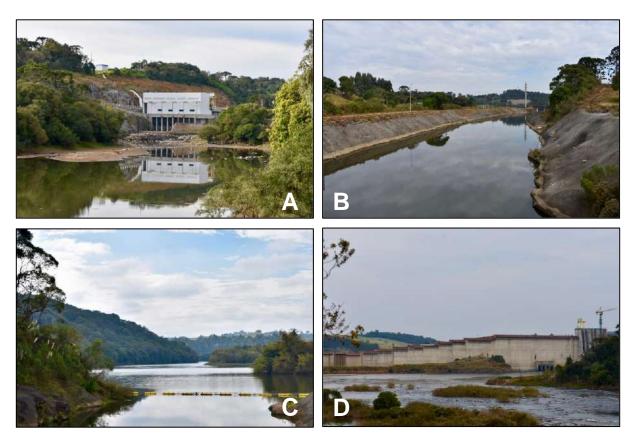



Figura 3.11 - Empreendimentos hidrelétricos no rio Canoas.

Nota: A - Vista da casa de força da PCH Pery; B - Canal adutor da PCH Pery; C - Vista do reservatório da PCH Pery; D - Barragem da UHE São Roque.

É importante mencionar que alguns dos reservatórios formados pelos empreendimentos hidrelétricos apresentam, também, funções de regularização de vazão. De maneira específica, no que se refere aos reservatórios já em operação, cita-se a existência de outorga vigente, disponibilizada pela ANA (2021a), para regularização de vazão na UHE Campos Novos, conforme demonstrado na Tabela 3.27.

Tabela 3.27 - Outorga de regularização de vazão.

| Nº Processo         | Nome do Requerente         | Município    | Finalidade   | Latitude | Longitude |
|---------------------|----------------------------|--------------|--------------|----------|-----------|
| 0250.1.0014812/2011 | CAMPOS NOVOS ENERGIA S. A. | Campos Novos | Campos Novos | -27,600  | -51,317   |

Fonte: ANA (2021a).





### 3.2.2 Lançamento de Efluentes

Conforme ANA (2017) e Tabela 3.28, todos os municípios em estudo realizavam o lançamento de efluente bruto, ou seja, sem nenhum tipo de tratamento em algum corpo hídrico, totalizando 182,4 l/s lançados. Nesse cenário, merecem destaque o município de Lages, que lançava 113,6 l/s e Curitibanos, 27,4 l/s. Ratificando tal informação, mediante SDE (2011a, 2011b, 2011c, 2011d, 2011e, 2011f, 2011g, 2011h, 2011i, 2011j), em alguns municípios era comum o despejo de efluentes domésticos nas redes fluviais ou diretamente nos cursos d'água.

Sob tal temática, identificaram-se outorgas, no banco de dados disponibilizado pela ANA (2021a) para a finalidade em tela. Conforme Tabela 3.29, destacam-se os lancamentos provenientes da empresa Klabin S.A., atuante no ramo de celulose, cujas plantas industriais são responsáveis pelo lançamento total de 638,89 l/s no rio Canoas.

Tabela 3.28 - Lançamento de efluentes brutos nos municípios da área de estudo.

| Município           | *Efluente bruto<br>lançado (l/s) |
|---------------------|----------------------------------|
| Abdon Batista       | 0,1                              |
| Anita Garibaldi     | 3,7                              |
| Bocaina do Sul      | 1,0                              |
| Bom Retiro          | 4,1                              |
| Brunópolis          | 0,7                              |
| Campos Novos        | 6,1                              |
| Celso Ramos         | 0,8                              |
| Cerro Negro         | 0,7                              |
| Correia Pinto       | 3,2                              |
| Curitibanos         | 27,4                             |
| Lages               | 113,6                            |
| Otacílio Costa      | 13,0                             |
| Palmeira            | 0,7                              |
| Ponte Alta          | 2,7                              |
| Rio Rufino          | 0,9                              |
| São José do Cerrito | 1,4                              |
| Urubici             | 1,2                              |
| Vargem              | 1,0                              |
| Total               | 182,4                            |

Fonte: ANA (2017).

Nota: \* somatório de efluentes brutos coletados e não coletados que são lançados em corpos hídricos





Tabela 3.29 - Lançamentos de efluentes no rio Canoas.

| Informações da | Requerente                |             |             |  |  |  |  |  |
|----------------|---------------------------|-------------|-------------|--|--|--|--|--|
| outorga        | CAMPOS NOVOS ENERGIA S.A. | KLABIN S.A. | KLABIN S.A. |  |  |  |  |  |
| Municipio      | Campos Novos              | Palmeira    | Ponte Alta  |  |  |  |  |  |
| Corpo Receptor | Rio Canoas                | Rio Canoas  | Rio Canoas  |  |  |  |  |  |
| Finalidade     | Esgotamento Sanitário     | Indústria   | Indústria   |  |  |  |  |  |
| Interferência  | Lançamento                | Lançamento  | Lançamento  |  |  |  |  |  |
| Vazão (l/s)    | 0,04                      | 305,56      | 333,33      |  |  |  |  |  |

Fonte: ANA (2021a).

#### 3.2.3 Recreação, Lazer e Pesca

As áreas às margens do rio Canoas, especificamente no município de Urubici, são bastante visadas na perspectiva do turismo ecológico, sendo marcadas pelas diversas cachoeiras e trilhas ali existentes, a saber: Cachoeira do Avencal; Trilha Cascata da Neve; Cachoeira Véu da Noiva; Cachoeira do Vacariano e Cachoeira Rio dos Bugres.

Em especial, o setor privado do município de Urubici também investe na região próxima à cabeceira, sendo notória a valorização imobiliária mediante a presença de hotéis, pousadas, campings, sítios e casas para aluguel de temporada nas proximidades do rio Canoas. Essas estruturas, exemplificadas na Figura 3.12, são utilizadas para atendimento da demanda do fluxo de turistas na região.









Figura 3.12 - Estruturas destinadas ao turismo ecológico no município de Urubici.

Nota: A - Casa para aluguel de temporada. B - Placas indicativas de aluguel de casa e propriedade particular. C Área de camping às margens do rio Canoas.

Ainda em campo, identificaram-se barcos, aparentemente, utilizados para a pesca, demonstrados na Figura 3.13A. Tal atividade é desenvolvida como lazer, especialmente na porção Alta do rio Canoas, conforme demonstrado na Figura 3.13B.



Figura 3.13 - Indícios de pesca no rio Canoas.

Nota: A - Barcos de pesca no município de Correia Pinto. B - Placa indicativa de pesca esportiva no município de Urubici.





#### 3.2.4 Navegação

Verificou-se, durante os trabalhos de campo, o uso do rio Canoas para transporte de pessoas, veículos particulares, insumos e produtos agrícolas, por meio de balsas alocadas nos municípios de Ponte Alta, Otacílio Costa e Curitibanos. Em Ponte Alta, a travessia do rio canoas é realizada por meio da balsa manual denominada "Vereador Ricardo Farias Lima", apresentada na Figura 3.14A, de responsabilidade da Marinha Brasileira. Em Otacílio Costa, também foi identificado o uso de balsa manual, conhecida como "São Sebastião de Canoas", de responsabilidade da Prefeitura Municipal e exposta na Figura 3.14B. Já em Curitibanos, o transporte ocorre por meio de balsa "Valeco", apresentada na Figura 3.14C, de propriedade particular, sendo a única da região operada com o uso de motor.





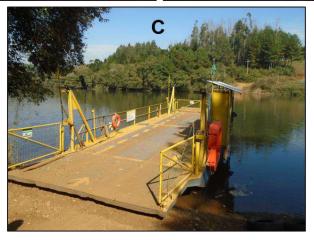



Figura 3.14 - Balsas localizadas no Médio Canoas.

Nota: A - Balsa Vereador Ricardo Farias Lima, no município de Ponte Alta. B - Balsa São Sebastião de Canoas, no município de Otacílio Costa. C - Balsa Valeco, no município de Curitibanos.

#### ESTIMATIVA DAS SÉRIE DE VAZÕES DE USOS CONSUNTIVOS

No contexto da AIBH é imprescindível, para a avaliação dos usos consuntivos da água, a estimativa de séries de vazões a fim de obter perspectivas temporais e quantitativas acerca da demanda hídrica na região estudada. Tal procedimento possibilita, ainda, a determinação das vazões para os diferentes cenários propostos, bem como a avalição do balanço hídrico.

Diante disso, foram estimadas as vazões de retirada, de retorno e de consumo considerando os seguintes usos:

abastecimento urbano;







- abastecimento rural;
- criação de animais;
- irrigação; e,
- uso industrial.

Inicialmente, avaliaram-se os dados disponíveis para a estimativa das vazões de captação. retorno e consumo para os diferentes usos. Tais dados correspondem, principalmente, às informações socioeconômicas relacionadas ao consumo hídrico, sendo, portanto, utilizados os levantamentos realizados na fase de diagnóstico integrante do Volume I - Diagnóstico Socioambiental da AIBH do rio Canoas, bem como fontes complementares que se mostraram necessárias na etapa atual.

Na sequência, buscou-se a determinação de anos de referência para as estimativas aqui realizadas. Num primeiro momento, idealizou-se a utilização de anos concomitantes para todos os usos da água. Entretanto, diante da incongruência entre as datas, optou-se pela definição de anos de referência de forma particular para cada atividade. Assim sendo, foram definidos, ao menos, dois (2) anos de referência para cada atividade, viabilizando, assim, a extrapolação para os distintos cenários, os quais serão discutidos oportunamente.

As metodologias empregadas na estimativa das séries de vazões para os usos consuntivos são apresentadas a seguir. Destaca-se que o estudo Estimativa das Vazões para Atividades de Uso Consuntivo da Água nas Principais Bacias do Sistema Interligado Nacional (ONS/ANA/ANEEL/MME/CONSÓRCIO FAHMA-DZETA, 2005) foi utilizado como referência, tendo sido adotados, também, outros procedimentos.

#### Abastecimento Urbano

Para a obtenção das séries de vazões destinadas ao abastecimento urbano, foram levantados os dados de população urbana advindos dos censos demográficos de 1991, 2000 e 2010 (PNUD; FJP; Ipea, 2020). Além dos dados de população, os parâmetros utilizados na determinação da vazão captada foram o consumo per capita, apresentado na Tabela 4.1, e o índice de perdas, ambos provenientes do banco de dados do Snis (BRASIL, 2019). Em específico, para o índice de perdas, considerou-se o valor médio dos municípios analisados em 2019, correspondendo a 35%.





Tabela 4.1 - Consumo *per capita* adotado para cada município.

| Município           | Q pc (I/hab.dia) |
|---------------------|------------------|
| Abdon Batista       | 588,3            |
| Anita Garibaldi     | 109,8            |
| Bocaina do Sul      | 130,8            |
| Bom Retiro          | 114,2            |
| Brunópolis          | 201,6            |
| Campos Novos        | 120,9            |
| Celso Ramos         | 102,7            |
| Cerro Negro         | 110,6            |
| Correia Pinto       | 126,8            |
| Curitibanos         | 116,3            |
| Lages               | 174,7            |
| Otacílio Costa      | 124,2            |
| Palmeira            | 118,3            |
| Ponte Alta          | 109,2            |
| Rio Rufino          | 171,2            |
| São José do Cerrito | 105,6            |
| Urubici             | 121,1            |
| Vargem              | 82,4             |

Fonte: Brasil (2019).

Dando sequência, a vazão de retirada, ou vazão captada, foi calculada por meio produto da população urbana pelo consumo per capita, somada à vazão perdida na distribuição, conforme Equação 5.1.

$$Q_{captada} = Pop_{urbana}.\,Q_{pc} + \left(Pop_{urbana}.\,Q_{pc}\right).\,0,35$$

Equação 5.1

Em que:

Q<sub>captada</sub> = vazão captada para abastecimento urbano (I/dia);

Pop<sub>urb</sub> = população urbana (habitantes); e,

Q<sub>pc</sub> = consumo de água *per capita* (l/hab.dia).

Como a sede municipal de todos os municípios analisados encontra-se dentro da área de estudo, mesmo para aqueles que apresentam parte de seu território fora da referida área, no quesito abastecimento urbano não foram realizadas adaptações nos dados de população para o cálculo da vazão captada.

Para estimativa da vazão de retorno foi considerada a recomendação da norma técnica NBR 9.649 (ABNT, 1986) bem como da ONS/ANA/ANEEL/MME/CONSÓRCIO FAHMA-DZETA (2005), utilizando, para tanto, o valor de 0,8 para o coeficiente de retorno na falta de valores obtidos em campo. A Equação 5.2 representa tal estimativa.

$$Q_{retorno} = Q_{captada}.0,8$$

Equação 5.2

Em que:

Q<sub>retorno</sub> = vazão de retorno do abastecimento urbano (l/dia);







Em seguida, a vazão efetivamente consumida no abastecimento urbano é dada pela diferença da vazão de captação e vazão de retorno, como apresentado na Equação 5.3.

$$Q_{consumo} = Q_{captada} - Q_{retorno}$$

Equação 5.3

Em que:

Q<sub>consumo</sub> = vazão consumida pelo abastecimento urbano (I/dia).





## 4.1.1 Resultados

Na sequência, a Tabela 4.2 apresenta os resultados das estimativas de vazões para abastecimento urbano.

Tabela 4.2 - Demandas hídricas para abastecimento urbano.

| Manufatula          |             | 1991                     |                          |             | 2000                     |                          |             | 2010                     |                          |  |  |
|---------------------|-------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|--|--|
| Município           | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) |  |  |
| Abdon Batista       | 0,0038      | 0,0031                   | 0,0008                   | 0,0066      | 0,0052                   | 0,0013                   | 0,0067      | 0,0053                   | 0,0013                   |  |  |
| Anita Garibaldi     | 0,0060      | 0,0048                   | 0,0012                   | 0,0072      | 0,0057                   | 0,0014                   | 0,0078      | 0,0062                   | 0,0016                   |  |  |
| Bocaina do Sul      | 0,0004      | 0,0004                   | 0,0001                   | 0,0008      | 0,0007                   | 0,0002                   | 0,0020      | 0,0016                   | 0,0004                   |  |  |
| Bom Retiro          | 0,0072      | 0,0058                   | 0,0014                   | 0,0095      | 0,0076                   | 0,0019                   | 0,0115      | 0,0092                   | 0,0023                   |  |  |
| Brunópolis          | 0,0024      | 0,0019                   | 0,0005                   | 0,0022      | 0,0018                   | 0,0004                   | 0,0022      | 0,0018                   | 0,0004                   |  |  |
| Campos Novos        | 0,0322      | 0,0258                   | 0,0064                   | 0,0426      | 0,0341                   | 0,0085                   | 0,0511      | 0,0409                   | 0,0102                   |  |  |
| Celso Ramos         | 0,0012      | 0,0010                   | 0,0002                   | 0,0010      | 0,0008                   | 0,0002                   | 0,0014      | 0,0011                   | 0,0003                   |  |  |
| Cerro Negro         | 0,0006      | 0,0005                   | 0,0001                   | 0,0012      | 0,0010                   | 0,0002                   | 0,0013      | 0,0011                   | 0,0003                   |  |  |
| Correia Pinto       | 0,0269      | 0,0215                   | 0,0054                   | 0,0239      | 0,0191                   | 0,0048                   | 0,0238      | 0,0191                   | 0,0048                   |  |  |
| Curitibanos         | 0,0523      | 0,0418                   | 0,0105                   | 0,0589      | 0,0472                   | 0,0118                   | 0,0632      | 0,0505                   | 0,0126                   |  |  |
| Lages               | 0,3723      | 0,2978                   | 0,0745                   | 0,4192      | 0,3354                   | 0,0838                   | 0,4202      | 0,3362                   | 0,0840                   |  |  |
| Otacílio Costa      | 0,0194      | 0,0155                   | 0,0039                   | 0,0249      | 0,0199                   | 0,0050                   | 0,0289      | 0,0231                   | 0,0058                   |  |  |
| Palmeira            | 0,0011      | 0,0009                   | 0,0002                   | 0,0014      | 0,0011                   | 0,0003                   | 0,0017      | 0,0014                   | 0,0003                   |  |  |
| Ponte Alta          | 0,0052      | 0,0042                   | 0,0010                   | 0,0065      | 0,0052                   | 0,0013                   | 0,0061      | 0,0049                   | 0,0012                   |  |  |
| Rio Rufino          | 0,0008      | 0,0007                   | 0,0002                   | 0,0015      | 0,0012                   | 0,0003                   | 0,0018      | 0,0015                   | 0,0004                   |  |  |
| São José do Cerrito | 0,0030      | 0,0024                   | 0,0006                   | 0,0036      | 0,0028                   | 0,0007                   | 0,0041      | 0,0033                   | 0,0008                   |  |  |
| Urubici             | 0,0099      | 0,0079                   | 0,0020                   | 0,0126      | 0,0101                   | 0,0025                   | 0,0134      | 0,0107                   | 0,0027                   |  |  |
| Vargem              | 0,0005      | 0,0004                   | 0,0001                   | 0,0008      | 0,0007                   | 0,0002                   | 0,0012      | 0,0009                   | 0,0002                   |  |  |
| Total               | 0,5453      | 0,4362                   | 0,1091                   | 0,6244      | 0,4995                   | 0,1249                   | 0,6483      | 0,5187                   | 0,1297                   |  |  |

Nota: Qcap = vazão captada; Qret = vazão de retorno e Qcon = vazão consumida.





#### **Abastecimento Rural** 4.2

Para a obtenção das séries de vazão para o abastecimento rural, assim como para o abastecimento urbano, foram considerados os dados dos censos demográficos de 1991, 2000 e 2010 (PNUD; FJP; Ipea, 2020).

A vazão captada para o abastecimento rural foi determinada pelo produto da população rural municipal pelo consumo per capita de captação rural, conforme expresso na Equação 5.4.

$$Q_{captada} = Pop_{rural}. Q_{pc}$$

Equação 5.4

Em que:

Q<sub>captada</sub> = vazão captada para abastecimento rural (l/dia);

Pop<sub>rural</sub> = população rural (habitantes); e,

Q<sub>pc</sub> = consumo de água *per capita* (l/hab.dia).

Para o consumo per capita rural adotou-se o valor de 100 l/hab.dia, sendo utilizado por ONS/ANA/ANEEL/MME/CONSÓRCIO FAHMA-DZETA (2005) para estimativas realizadas em municípios da bacia do rio Canoas.

Para a obtenção das séries de vazão captada foi necessário considerar a distribuição uniforme da população rural em todo o município. Dessa forma, o número de habitantes rurais em cada cidade foi ajustado em função do percentual do território municipal inserido na área de estudo.

Mesmo não havendo coleta de esgoto na maioria das áreas rurais estudadas, foi adotada uma taxa de retorno pertinente ao abastecimento rural, já que seus efluentes, normalmente, são despejados no solo, reabastecendo o lençol freático e o escoamento subterrâneo, ou diretamente em corpos hídricos. Considerou-se, nesse caso, a taxa de retorno de 0,5, conforme preconizado por ONS/ANA/ANEEL/MME/CONSÓRCIO FAHMA-DZETA (2005).

Assim sendo, a Equação 5.5 foi adotada para estimativa da vazão de retorno do abastecimento rural.

$$Q_{retorno} = Q_{cantada}.0,5$$

Equação 5.5

Em que:

Q<sub>retorno</sub> = vazão de retorno do abastecimento rural (I/dia).

Por fim, a vazão de consumo é o resultado da diferença entre a vazão captada e a vazão de retorno, conforme Equação 5.6.

$$Q_{consumo} = Q_{captada} - Q_{retorno}$$

Equação 5.6

Em que:

Q<sub>consumo</sub> = vazão consumida pelo abastecimento rural (I/dia).





## 4.2.1 Resultados

Na sequência, a Tabela 4.3 apresenta os resultados das estimativas de vazões para abastecimento rural.

Tabela 4.3 - Demandas hídricas para abastecimento rural.

| Manaiaíaia          |                          | 1991                     |                          | 2000        |                          |                          | 2010        |                          |                          |  |
|---------------------|--------------------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|--|
| Município           | Qcap (m <sup>3</sup> /s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) |  |
| Abdon Batista       | 0,0033                   | 0,0016                   | 0,0016                   | 0,0024      | 0,0012                   | 0,0012                   | 0,0022      | 0,0011                   | 0,0011                   |  |
| Anita Garibaldi     | 0,0039                   | 0,0019                   | 0,0019                   | 0,0035      | 0,0017                   | 0,0017                   | 0,0023      | 0,0012                   | 0,0012                   |  |
| Bocaina do Sul      | 0,0035                   | 0,0018                   | 0,0018                   | 0,0038      | 0,0019                   | 0,0019                   | 0,0027      | 0,0013                   | 0,0013                   |  |
| Bom Retiro          | 0,0031                   | 0,0016                   | 0,0016                   | 0,0026      | 0,0013                   | 0,0013                   | 0,0025      | 0,0013                   | 0,0013                   |  |
| Brunópolis          | 0,0032                   | 0,0016                   | 0,0016                   | 0,0030      | 0,0015                   | 0,0015                   | 0,0025      | 0,0012                   | 0,0012                   |  |
| Campos Novos        | 0,0087                   | 0,0043                   | 0,0043                   | 0,0064      | 0,0032                   | 0,0032                   | 0,0050      | 0,0025                   | 0,0025                   |  |
| Celso Ramos         | 0,0016                   | 0,0008                   | 0,0008                   | 0,0013      | 0,0007                   | 0,0007                   | 0,0011      | 0,0006                   | 0,0006                   |  |
| Cerro Negro         | 0,0026                   | 0,0013                   | 0,0013                   | 0,0017      | 0,0008                   | 0,0008                   | 0,0014      | 0,0007                   | 0,0007                   |  |
| Correia Pinto       | 0,0047                   | 0,0023                   | 0,0023                   | 0,0055      | 0,0028                   | 0,0028                   | 0,0032      | 0,0016                   | 0,0016                   |  |
| Curitibanos         | 0,0047                   | 0,0023                   | 0,0023                   | 0,0042      | 0,0021                   | 0,0021                   | 0,0034      | 0,0017                   | 0,0017                   |  |
| Lages               | 0,0030                   | 0,0015                   | 0,0015                   | 0,0020      | 0,0010                   | 0,0010                   | 0,0015      | 0,0008                   | 0,0008                   |  |
| Otacílio Costa      | 0,0028                   | 0,0014                   | 0,0014                   | 0,0012      | 0,0006                   | 0,0006                   | 0,0015      | 0,0007                   | 0,0007                   |  |
| Palmeira            | 0,0012                   | 0,0006                   | 0,0006                   | 0,0016      | 0,0008                   | 0,0008                   | 0,0017      | 0,0008                   | 0,0008                   |  |
| Ponte Alta          | 0,0021                   | 0,0010                   | 0,0010                   | 0,0016      | 0,0008                   | 0,0008                   | 0,0015      | 0,0008                   | 0,0008                   |  |
| Rio Rufino          | 0,0020                   | 0,0010                   | 0,0010                   | 0,0022      | 0,0011                   | 0,0011                   | 0,0020      | 0,0010                   | 0,0010                   |  |
| São José do Cerrito | 0,0109                   | 0,0054                   | 0,0054                   | 0,0095      | 0,0048                   | 0,0048                   | 0,0078      | 0,0039                   | 0,0039                   |  |
| Urubici             | 0,0035                   | 0,0017                   | 0,0017                   | 0,0029      | 0,0014                   | 0,0014                   | 0,0029      | 0,0015                   | 0,0015                   |  |
| Vargem              | 0,0034                   | 0,0017                   | 0,0017                   | 0,0030      | 0,0015                   | 0,0015                   | 0,0022      | 0,0011                   | 0,0011                   |  |
| Total               | 0,0681                   | 0,0340                   | 0,0340                   | 0,0584      | 0,0292                   | 0,0292                   | 0,0476      | 0,0238                   | 0,0238                   |  |

Nota: Qcap = vazão captada; Qret = vazão de retorno e Qcon = vazão consumida.





#### Criação Animal 4.3

Para a estimativa das séries de vazões destinadas à criação de animais foram utilizados os dados referentes ao efetivo de rebanhos dos anos de 2009 a 2019, fornecidos por IBGE (2020).

O cálculo das vazões retiradas para abastecimento animal foi realizado, portanto, para cada um dos municípios, sendo a vazão total obtida pelo somatório das vazões correspondentes a espécie animal, expresso pela Equação 5.7, conforme preconizado ONS/ANA/ANEEL/MME/CONSÓRCIO FAHMA-DZETA (2005).

$$Q_{captada} = \sum (Reb_{(esp\'ecie\ animal)}, q_{(esp\'ecie\ animal)})$$

Equação 5.7

Em que:

Q<sub>captada</sub> = vazão captada para criação animal (I/dia);

Reb<sub>(espécie animal)</sub> = rebanho por espécie animal (nº de animais); e,

q<sub>(espécie animal)</sub> = consumo de água *per capita* por espécie animal (l/animal.dia).

No que se refere ao consumo de água por espécie, aplicaram-se os valores demonstrados na Tabela 4.4.

Tabela 4.4 - Consumo de água per capita por espécie.

| Espécie Animal | Consumo (I/dia) |
|----------------|-----------------|
| Bovino         | 50,00           |
| Suíno          | 12,50           |
| Bublino        | 50,00           |
| Equino         | 50,00           |
| Asinino        | 50,00           |
| Muar           | 50,00           |
| Ovino          | 10,00           |
| Caprino        | 10,00           |
| Aves           | 0,36            |

Fonte: ONS/ANA/ANEEL/MME/CONSÓRCIO FAHMA-DZETA (2005).

Como alguns municípios estão parcialmente inseridos na área de estudo, adotou-se, para fins de cálculo do rebanho correspondente a cada espécie animal, o critério de proporcionalidade do território do município contido na área de estudo. Considerou-se, ainda, a distribuição uniforme dos rebanhos na área municipal.

Na sequência, para estimativa da vazão captada para dessedentação/criação animal que retorna aos cursos de água da bacia, foi considerada a recomendação ONS/ANA/ANEEL/MME/CONSÓRCIO FAHMA-DZETA (2005), definindo o valor de 0,2 para o coeficiente de retorno. A Equação 5.8 representa matematicamente a estimativa realizada.

$$Q_{retorno} = Q_{captada}.0,2$$

Equação 5.8

Em que:

Q<sub>retorno</sub> = vazão de retorno da criação animal (I/dia).







Em seguida, a vazão efetivamente consumida para dessedentação/criação animal é dada pela diferença da vazão de captação e vazão de retorno, conforme Equação 5.9.

 $Q_{consumo} = Q_{captada} - Q_{retorno}$ 

Equação 5.9

Em que:

Q<sub>retorno</sub> = vazão de retorno da criação animal (I/dia).





# 4.3.1 Resultados

Na sequência, a Tabela 4.5 apresenta os resultados das estimativas de vazões para criação animal.

Tabela 4.5 - Demandas hídricas para criação animal.

| Manufacta           | 2009                     |                          |                          | 2010        |                          |                          | 2011        |                          |                          | 2012        |                          |                          |
|---------------------|--------------------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|
| Município           | Qcap (m <sup>3</sup> /s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) |
| Abdon Batista       | 0,0080                   | 0,0016                   | 0,0064                   | 0,0082      | 0,0016                   | 0,0066                   | 0,0088      | 0,0018                   | 0,0070                   | 0,0087      | 0,0017                   | 0,0069                   |
| Anita Garibaldi     | 0,0094                   | 0,0019                   | 0,0075                   | 0,0080      | 0,0016                   | 0,0064                   | 0,0101      | 0,0020                   | 0,0081                   | 0,0106      | 0,0021                   | 0,0084                   |
| Bocaina do Sul      | 0,0089                   | 0,0018                   | 0,0071                   | 0,0073      | 0,0015                   | 0,0059                   | 0,0085      | 0,0017                   | 0,0068                   | 0,0064      | 0,0013                   | 0,0051                   |
| Bom Retiro          | 0,0179                   | 0,0036                   | 0,0143                   | 0,0150      | 0,0030                   | 0,0120                   | 0,0153      | 0,0031                   | 0,0122                   | 0,0164      | 0,0033                   | 0,0131                   |
| Brunópolis          | 0,0092                   | 0,0018                   | 0,0073                   | 0,0090      | 0,0018                   | 0,0072                   | 0,0098      | 0,0020                   | 0,0078                   | 0,0092      | 0,0018                   | 0,0074                   |
| Campos Novos        | 0,0461                   | 0,0092                   | 0,0369                   | 0,0479      | 0,0096                   | 0,0383                   | 0,0488      | 0,0098                   | 0,0391                   | 0,0489      | 0,0098                   | 0,0391                   |
| Celso Ramos         | 0,0035                   | 0,0007                   | 0,0028                   | 0,0037      | 0,0007                   | 0,0029                   | 0,0036      | 0,0007                   | 0,0029                   | 0,0036      | 0,0007                   | 0,0029                   |
| Cerro Negro         | 0,0048                   | 0,0010                   | 0,0038                   | 0,0046      | 0,0009                   | 0,0037                   | 0,0048      | 0,0010                   | 0,0038                   | 0,0047      | 0,0009                   | 0,0037                   |
| Correia Pinto       | 0,0165                   | 0,0033                   | 0,0132                   | 0,0158      | 0,0032                   | 0,0126                   | 0,0177      | 0,0035                   | 0,0142                   | 0,0149      | 0,0030                   | 0,0119                   |
| Curitibanos         | 0,0295                   | 0,0059                   | 0,0236                   | 0,0301      | 0,0060                   | 0,0240                   | 0,0256      | 0,0051                   | 0,0205                   | 0,0268      | 0,0054                   | 0,0215                   |
| Lages               | 0,0306                   | 0,0061                   | 0,0245                   | 0,0296      | 0,0059                   | 0,0237                   | 0,0260      | 0,0052                   | 0,0208                   | 0,0290      | 0,0058                   | 0,0232                   |
| Otacílio Costa      | 0,0088                   | 0,0018                   | 0,0071                   | 0,0067      | 0,0013                   | 0,0054                   | 0,0090      | 0,0018                   | 0,0072                   | 0,0086      | 0,0017                   | 0,0069                   |
| Palmeira            | 0,0068                   | 0,0014                   | 0,0055                   | 0,0045      | 0,0009                   | 0,0036                   | 0,0059      | 0,0012                   | 0,0047                   | 0,0070      | 0,0014                   | 0,0056                   |
| Ponte Alta          | 0,0133                   | 0,0027                   | 0,0106                   | 0,0117      | 0,0023                   | 0,0094                   | 0,0117      | 0,0023                   | 0,0094                   | 0,0123      | 0,0025                   | 0,0098                   |
| Rio Rufino          | 0,0059                   | 0,0012                   | 0,0047                   | 0,0054      | 0,0011                   | 0,0043                   | 0,0062      | 0,0012                   | 0,0050                   | 0,0065      | 0,0013                   | 0,0052                   |
| São José do Cerrito | 0,0227                   | 0,0045                   | 0,0182                   | 0,0221      | 0,0044                   | 0,0177                   | 0,0234      | 0,0047                   | 0,0187                   | 0,0253      | 0,0051                   | 0,0202                   |
| Urubici             | 0,0163                   | 0,0033                   | 0,0130                   | 0,0142      | 0,0028                   | 0,0114                   | 0,0148      | 0,0030                   | 0,0119                   | 0,0154      | 0,0031                   | 0,0124                   |
| Vargem              | 0,0092                   | 0,0018                   | 0,0074                   | 0,0096      | 0,0019                   | 0,0077                   | 0,0096      | 0,0019                   | 0,0077                   | 0,0094      | 0,0019                   | 0,0075                   |
| Total               | 0,2675                   | 0,0535                   | 0,2140                   | 0,2535      | 0,0507                   | 0,2028                   | 0,2598      | 0,0520                   | 0,2078                   | 0,2635      | 0,0527                   | 0,2108                   |

Continua.





Continuação.

| Município           | 2013                     |                          |                          | 2014        |                          |                          | 2015        |                          |                          | 2016        |                          |                          |
|---------------------|--------------------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|
|                     | Qcap (m <sup>3</sup> /s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) |
| Abdon Batista       | 0,0086                   | 0,0017                   | 0,0069                   | 0,0090      | 0,0018                   | 0,0072                   | 0,0092      | 0,0018                   | 0,0074                   | 0,0090      | 0,0018                   | 0,0072                   |
| Anita Garibaldi     | 0,0087                   | 0,0017                   | 0,0070                   | 0,0096      | 0,0019                   | 0,0076                   | 0,0102      | 0,0020                   | 0,0082                   | 0,0106      | 0,0021                   | 0,0085                   |
| Bocaina do Sul      | 0,0089                   | 0,0018                   | 0,0071                   | 0,0098      | 0,0020                   | 0,0078                   | 0,0103      | 0,0021                   | 0,0083                   | 0,0112      | 0,0022                   | 0,0090                   |
| Bom Retiro          | 0,0155                   | 0,0031                   | 0,0124                   | 0,0594      | 0,0119                   | 0,0475                   | 0,0176      | 0,0035                   | 0,0141                   | 0,0185      | 0,0037                   | 0,0148                   |
| Brunópolis          | 0,0082                   | 0,0016                   | 0,0066                   | 0,0085      | 0,0017                   | 0,0068                   | 0,0087      | 0,0017                   | 0,0070                   | 0,0090      | 0,0018                   | 0,0072                   |
| Campos Novos        | 0,0490                   | 0,0098                   | 0,0392                   | 0,0516      | 0,0103                   | 0,0412                   | 0,0497      | 0,0099                   | 0,0398                   | 0,0493      | 0,0099                   | 0,0394                   |
| Celso Ramos         | 0,0036                   | 0,0007                   | 0,0029                   | 0,0036      | 0,0007                   | 0,0029                   | 0,0037      | 0,0007                   | 0,0030                   | 0,0040      | 0,0008                   | 0,0032                   |
| Cerro Negro         | 0,0041                   | 0,0008                   | 0,0033                   | 0,0046      | 0,0009                   | 0,0037                   | 0,0047      | 0,0009                   | 0,0038                   | 0,0048      | 0,0010                   | 0,0038                   |
| Correia Pinto       | 0,0149                   | 0,0030                   | 0,0119                   | 0,0167      | 0,0033                   | 0,0134                   | 0,0173      | 0,0035                   | 0,0138                   | 0,0190      | 0,0038                   | 0,0152                   |
| Curitibanos         | 0,0253                   | 0,0051                   | 0,0202                   | 0,0285      | 0,0057                   | 0,0228                   | 0,0251      | 0,0050                   | 0,0201                   | 0,0276      | 0,0055                   | 0,0221                   |
| Lages               | 0,0266                   | 0,0053                   | 0,0213                   | 0,0275      | 0,0055                   | 0,0220                   | 0,0286      | 0,0057                   | 0,0229                   | 0,0300      | 0,0060                   | 0,0240                   |
| Otacílio Costa      | 0,0088                   | 0,0018                   | 0,0071                   | 0,0096      | 0,0019                   | 0,0077                   | 0,0099      | 0,0020                   | 0,0079                   | 0,0106      | 0,0021                   | 0,0085                   |
| Palmeira            | 0,0061                   | 0,0012                   | 0,0049                   | 0,0064      | 0,0013                   | 0,0051                   | 0,0064      | 0,0013                   | 0,0051                   | 0,0068      | 0,0014                   | 0,0054                   |
| Ponte Alta          | 0,0125                   | 0,0025                   | 0,0100                   | 0,0113      | 0,0023                   | 0,0090                   | 0,0112      | 0,0022                   | 0,0090                   | 0,0124      | 0,0025                   | 0,0099                   |
| Rio Rufino          | 0,0063                   | 0,0013                   | 0,0050                   | 0,0065      | 0,0013                   | 0,0052                   | 0,0069      | 0,0014                   | 0,0055                   | 0,0073      | 0,0015                   | 0,0059                   |
| São José do Cerrito | 0,0247                   | 0,0049                   | 0,0198                   | 0,0268      | 0,0054                   | 0,0214                   | 0,0269      | 0,0054                   | 0,0215                   | 0,0296      | 0,0059                   | 0,0237                   |
| Urubici             | 0,0167                   | 0,0033                   | 0,0134                   | 0,0177      | 0,0035                   | 0,0142                   | 0,0180      | 0,0036                   | 0,0144                   | 0,0196      | 0,0039                   | 0,0157                   |
| Vargem              | 0,0095                   | 0,0019                   | 0,0076                   | 0,0088      | 0,0018                   | 0,0070                   | 0,0085      | 0,0017                   | 0,0068                   | 0,0088      | 0,0018                   | 0,0071                   |
| Total               | 0,2580                   | 0,0516                   | 0,2064                   | 0,3157      | 0,0631                   | 0,2525                   | 0,2730      | 0,0546                   | 0,2184                   | 0,2881      | 0,0576                   | 0,2305                   |

Continua.





Continuação.

|                     |                          | 2017                     |                          |             | 2018                     |                          | 2019        |                          |                          |  |
|---------------------|--------------------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|--|
| Município           | Qcap (m <sup>3</sup> /s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) |  |
| Abdon Batista       | 0,0087                   | 0,0017                   | 0,0070                   | 0,0094      | 0,0019                   | 0,0076                   | 0,0093      | 0,0019                   | 0,0074                   |  |
| Anita Garibaldi     | 0,0112                   | 0,0022                   | 0,0090                   | 0,0113      | 0,0023                   | 0,0090                   | 0,0108      | 0,0022                   | 0,0086                   |  |
| Bocaina do Sul      | 0,0120                   | 0,0024                   | 0,0096                   | 0,0097      | 0,0019                   | 0,0077                   | 0,0108      | 0,0022                   | 0,0087                   |  |
| Bom Retiro          | 0,0178                   | 0,0036                   | 0,0143                   | 0,0151      | 0,0030                   | 0,0121                   | 0,0157      | 0,0031                   | 0,0125                   |  |
| Brunópolis          | 0,0082                   | 0,0016                   | 0,0066                   | 0,0085      | 0,0017                   | 0,0068                   | 0,0085      | 0,0017                   | 0,0068                   |  |
| Campos Novos        | 0,0471                   | 0,0094                   | 0,0377                   | 0,0463      | 0,0093                   | 0,0370                   | 0,0466      | 0,0093                   | 0,0372                   |  |
| Celso Ramos         | 0,0034                   | 0,0007                   | 0,0028                   | 0,0039      | 0,0008                   | 0,0031                   | 0,0039      | 0,0008                   | 0,0031                   |  |
| Cerro Negro         | 0,0050                   | 0,0010                   | 0,0040                   | 0,0046      | 0,0009                   | 0,0036                   | 0,0047      | 0,0009                   | 0,0037                   |  |
| Correia Pinto       | 0,0190                   | 0,0038                   | 0,0152                   | 0,0171      | 0,0034                   | 0,0137                   | 0,0203      | 0,0041                   | 0,0162                   |  |
| Curitibanos         | 0,0259                   | 0,0052                   | 0,0207                   | 0,0263      | 0,0053                   | 0,0210                   | 0,0267      | 0,0053                   | 0,0213                   |  |
| Lages               | 0,0307                   | 0,0061                   | 0,0245                   | 0,0266      | 0,0053                   | 0,0213                   | 0,0274      | 0,0055                   | 0,0219                   |  |
| Otacílio Costa      | 0,0111                   | 0,0022                   | 0,0089                   | 0,0096      | 0,0019                   | 0,0076                   | 0,0099      | 0,0020                   | 0,0079                   |  |
| Palmeira            | 0,0071                   | 0,0014                   | 0,0057                   | 0,0069      | 0,0014                   | 0,0056                   | 0,0071      | 0,0014                   | 0,0057                   |  |
| Ponte Alta          | 0,0118                   | 0,0024                   | 0,0094                   | 0,0106      | 0,0021                   | 0,0085                   | 0,0107      | 0,0021                   | 0,0086                   |  |
| Rio Rufino          | 0,0072                   | 0,0014                   | 0,0057                   | 0,0051      | 0,0010                   | 0,0041                   | 0,0057      | 0,0011                   | 0,0046                   |  |
| São José do Cerrito | 0,0303                   | 0,0061                   | 0,0243                   | 0,0283      | 0,0057                   | 0,0227                   | 0,0290      | 0,0058                   | 0,0232                   |  |
| Urubici             | 0,0199                   | 0,0040                   | 0,0159                   | 0,0153      | 0,0031                   | 0,0122                   | 0,0154      | 0,0031                   | 0,0123                   |  |
| Vargem              | 0,0083                   | 0,0017                   | 0,0066                   | 0,0089      | 0,0018                   | 0,0071                   | 0,0091      | 0,0018                   | 0,0072                   |  |
| Total               | 0,2849                   | 0,0570                   | 0,2279                   | 0,2635      | 0,0527                   | 0,2108                   | 0,2715      | 0,0543                   | 0,2172                   |  |

Nota: Qcap = vazão captada; Qret = vazão de retorno e Qcon = vazão consumida.





#### 4.4 <u>Irrigação</u>

A estimativa de vazões captadas para irrigação foi realizada para todos os municípios pertencentes à área de estudo, sendo expressa pela Equação 5.10.

 $Q_{captada} = A_i.k_{cap}$ 

Equação 5.10

Em que:

Q<sub>captada</sub> = vazão captada para fins de irrigação (l/dia);

A<sub>i</sub> = área irrigada (hectares); e,

K<sub>cap</sub> = coeficiente de captação específica (l/s/ha).

As áreas irrigadas por município foram obtidas nos Censos Agropecuários de 2006 e 2017 (IBGE, 2006 e 2017). Assim como aplicado anteriormente, como alguns municípios estão parcialmente inseridos na área de estudo, adotou-se, para fins de cálculo da área irrigada, o critério de proporcionalidade do território do município contido na área de estudo, assumindose que as regiões irrigadas em cada município são distribuídas uniformemente.

Paralelamente, de acordo com FBB; MMA & FUNARBE (2011), a captação específica média para irrigação do estado de Santa Catarina, integrante da Equação 5.10, é 0,52 l/s/ha.

Na sequência, para a vazão efetivamente consumida, multiplicou-se a área irrigada pelo coeficiente de consumo específico, como denota a Equação 5.11.

 $Q_{consumo} = A_i.k_{cons}$ 

Equação 5.11

Em que:

Q<sub>consumo</sub> = vazão consumida na irrigação (I/dia); e,

K<sub>cons</sub> = coeficiente de consumo específico (l/s/ha).

Para a estimativa do consumo específico médio, foi adotada a mesma taxa usada nos estudos do PERH-SC (SDE, 2017), equivalente a 48% da vazão captada. Assim sendo, a Tabela 4.6 apresenta os coeficientes utilizados nos cálculos da Equação 5.10 e Equação 5.11.

Tabela 4.6 - Vazões de captação e consumo específico.

| Kcap (I/s/ha) | Kcons (I/s/ha) |  |  |  |  |
|---------------|----------------|--|--|--|--|
| 0,52          | 0,25           |  |  |  |  |

Fonte: FBB; MMA; FUNARBE (2011) e SDE (2017).

Conforme Equação 5.12, a vazão de retorno é o resultado da diferença entre a vazão captada e a vazão consumida.

 $Q_{retorno} = Q_{captada} - Q_{consumo}$ 

Equação 5.12

Em que:

Q<sub>retorno</sub> = vazão de retorno da irrigação (I/dia).





# 4.4.1 Resultados

Na sequência, a Tabela 4.7 apresenta os resultados das estimativas de vazões para irrigação.

Tabela 4.7 - Demandas hídricas para irrigação.

| Marita Cata         |             | 2006                     |             |             | 2017                     |                          |
|---------------------|-------------|--------------------------|-------------|-------------|--------------------------|--------------------------|
| Município           | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m³/s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) |
| Abdon Batista       | 0,0034      | 0,0017                   | 0,0016      | 0,0104      | 0,0054                   | 0,0050                   |
| Anita Garibaldi     | 0,0015      | 0,0008                   | 0,0007      | 0,0038      | 0,0020                   | 0,0018                   |
| Bocaina do Sul      | 0,0000      | 0,0000                   | 0,0000      | 0,0047      | 0,0024                   | 0,0022                   |
| Bom Retiro          | 0,0794      | 0,0413                   | 0,0381      | 0,0656      | 0,0341                   | 0,0315                   |
| Brunópolis          | 0,0244      | 0,0127                   | 0,0117      | 0,0712      | 0,0370                   | 0,0342                   |
| Campos Novos        | 0,0601      | 0,0312                   | 0,0288      | 0,0821      | 0,0427                   | 0,0394                   |
| Celso Ramos         | 0,0058      | 0,0030                   | 0,0028      | 0,0254      | 0,0132                   | 0,0122                   |
| Cerro Negro         | 0,0000      | 0,0000                   | 0,0000      | 0,0011      | 0,0006                   | 0,0005                   |
| Correia Pinto       | 0,0203      | 0,0106                   | 0,0097      | 0,0348      | 0,0181                   | 0,0167                   |
| Curitibanos         | 0,3819      | 0,1986                   | 0,1833      | 0,3380      | 0,1758                   | 0,1622                   |
| Lages               | 0,0099      | 0,0051                   | 0,0047      | 0,1050      | 0,0546                   | 0,0504                   |
| Otacílio Costa      | 0,0000      | 0,0000                   | 0,0000      | 0,0014      | 0,0007                   | 0,0007                   |
| Palmeira            | 0,0000      | 0,0000                   | 0,0000      | 0,0036      | 0,0019                   | 0,0017                   |
| Ponte Alta          | 0,0225      | 0,0117                   | 0,0108      | 0,0057      | 0,0030                   | 0,0027                   |
| Rio Rufino          | 0,0229      | 0,0119                   | 0,0110      | 0,0182      | 0,0095                   | 0,0087                   |
| São José do Cerrito | 0,0178      | 0,0093                   | 0,0085      | 0,0504      | 0,0262                   | 0,0242                   |
| Urubici             | 0,1770      | 0,0920                   | 0,0850      | 0,1288      | 0,0670                   | 0,0618                   |
| Vargem              | 0,0000      | 0,000                    | 0,0000      | 0,0000      | 0,000                    | 0,0000                   |
| Total               | 0,8268      | 0,4299                   | 0,3969      | 0,9504      | 0,4942                   | 0,4562                   |

Nota: Qcap = vazão captada; Qret = vazão de retorno e Qcon = vazão consumida.





#### 4.5 **Uso Industrial**

A partir da análise dos dados disponíveis por município, concluiu-se que a aplicação de uma metodologia que relaciona a quantidade de empregados na indústria com a água captada é o único procedimento viável para a área em estudo, replicando o procedimento já utilizado por ANA (2017) no estudo Água na Indústria: Uso e Coeficientes Técnicos.

Assim sendo, as séries de vazões para o uso industrial foram estimadas a partir da quantidade de empregados na indústria. Para tanto, foram utilizados os dados disponibilizados pelo Sistema IBGE de Recuperação Automática (Sidra) (IBGE, 2019), relativos ao número de pessoal ocupado por classe da Classificação Nacional de Atividades Econômicas (Cnae 2.0) e por município, sendo esses dados referentes aos anos de 2009 a 2019.

Ainda, a metodologia empregada para o cálculo da demanda industrial baseou-se na estimativa de consumo de água para cada tipo de indústria, segundo o número de operários. A relação entre demanda de água e setor industrial foi obtida a partir de ANA (2017), conforme Tabela 4.8.





Tabela 4.8 - Coeficientes de retirada e consumo industrial.

| Classificação Nacional das Atividades Econômicas - CNAE 2.0          | Coeficiente de Retirada (Litros.empregado.dia-1) | Coeficiente de<br>Consumo (%) |
|----------------------------------------------------------------------|--------------------------------------------------|-------------------------------|
| FABRICAÇÃO DE PRODUTOS ALIMENTÍCIOS                                  | ·                                                | • •                           |
| Abate e fabricação de produtos de carne                              |                                                  |                               |
| Abate de reses, exceto suínos                                        | 2.491                                            | 12,5                          |
| Abate de suínos, aves e outros pequenos animais                      | 2.904                                            | 12,5                          |
| Fabricação de produtos de carne                                      | 751                                              | 12,5                          |
| Preservação do pescado e fabricação de produtos do pescado           |                                                  |                               |
| Preservação do pescado e fabricação de produtos do pescado           | 1.187                                            | 20                            |
| Fabricação de conservas de frutas, legumes e outros vegetais         |                                                  |                               |
| Fabricação de conservas de frutas                                    | 1.550                                            | 20                            |
| Fabricação de conservas de legumes e outros vegetais                 | 892                                              | 20                            |
| Fabricação de sucos de frutas, hortaliças e legumes                  | 2.312                                            | 20                            |
| Fabricação de óleos e gorduras vegetais e animais                    | 2.012                                            |                               |
| Fabricação de óleos vegetais em bruto, exceto óleo de milho          | 2.769                                            | 0                             |
| Fabricação de óleos vegetais refinados, exceto óleo de milho         | 3.253                                            | 0                             |
| Fabricação de margarina e outras gorduras vegetais e de óleos não-   | 0.200                                            |                               |
| comestíveis de animais                                               | 2.304                                            | 0                             |
| Laticínios                                                           |                                                  |                               |
|                                                                      | 1.886                                            | 36                            |
| Preparação do leite                                                  | 2.089                                            |                               |
| Fabricação de laticínios                                             |                                                  | 36                            |
| Fabricação de sorvetes e outros gelados comestíveis                  | 1.396                                            | 36                            |
| Moagem, fabricação de produtos amiláceos e de alimentos para         |                                                  |                               |
| animais                                                              |                                                  |                               |
| Beneficiamento de arroz e fabricação de produtos do arroz            | 667                                              | 28,8                          |
| Moagem de trigo e fabricação de derivados                            | 866                                              | 28,8                          |
| Fabricação de farinha de mandioca e derivados                        | 2.387                                            | 28,8                          |
| Fabricação de farinha de milho e derivados, exceto óleos de milho    | 150                                              | 28,8                          |
| Fabricação de amidos e féculas de vegetais e de óleos de milho       | 4.261                                            | 28,8                          |
| Fabricação de alimentos para animais                                 | 902                                              | 28,8                          |
| Moagem e fabricação de produtos de origem vegetal não especificados  | 2.288                                            | 28,8                          |
| anteriormente                                                        |                                                  | 20,0                          |
| Fabricação e refino de açúcar                                        |                                                  |                               |
| Fabricação de açúcar em bruto                                        | 16.490                                           | 100                           |
| Fabricação de açúcar refinado                                        | 16.490                                           | 100                           |
| Torrefação e moagem de café                                          |                                                  |                               |
| Torrefação e moagem de café                                          | 436                                              | 20                            |
| Fabricação de produtos à base de café                                | 694                                              | 20                            |
| Fabricação de outros produtos alimentícios                           |                                                  |                               |
| Fabricação de produtos de panificação                                | 176                                              | 20,1                          |
| Fabricação de biscoitos e bolachas                                   | 248                                              | 20,1                          |
| Fabricação de produtos derivados do cacau, de chocolates e confeitos | 596                                              | 20,1                          |
| Fabricação de massas alimentícias                                    | 404                                              | 20,1                          |
| Fabricação de especiarias, molhos, temperos e condimentos            | 2.269                                            | 20,1                          |
| Fabricação de alimentos e pratos prontos                             | 1.666                                            | 20,1                          |
| Fabricação de produtos alimentícios não especificados anteriormente  | 904                                              | 20,1                          |
| FABRICAÇÃO DE BEBIDAS                                                |                                                  |                               |
| Fabricação de bebidas alcoólicas                                     |                                                  |                               |
| Fabricação de aguardentes e outras bebidas destiladas                | 2.764                                            | 37,9                          |
| Fabricação de vinho                                                  | 5.414                                            | 20                            |
| Fabricação de malte, cervejas e chopes                               | 13.330                                           | 21,1                          |
| Fabricação de bebidas não-alcoólicas                                 | 4.782                                            | 40,9                          |

Continua.





Continuação

| Classificação Nacional das Atividades Econômicas – CNAE 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Coeficiente de Retirada (Litros.empregado.dia-1) | Coeficiente de<br>Consumo (%)                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|
| FABRICAÇÃO DE PRODUTOS DO FUMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 811                                              | 20                                           |
| FABRICAÇÃO DE PRODUTOS TÊXTEIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                              |
| Preparação e fiação de fibras têxteis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |                                              |
| Preparação e fiação de fibras de algodão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.347                                            | 19,5                                         |
| Preparação e fiação de fibras têxteis naturais, exceto algodão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.908                                            | 19,5                                         |
| Fiação de fibras artificiais e sintéticas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.473                                            | 19,5                                         |
| Fabricação de linhas para costurar e bordar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.803                                            | 19,5                                         |
| Tecelagem, exceto malha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                              |
| Tecelagem de fios de algodão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.395                                            | 16,7                                         |
| Fecelagem de fios de fibras têxteis naturais, exceto algodão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.319                                            | 16,7                                         |
| Fecelagem de fios de fibras artificiais e sintéticas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 761                                              | 16,7                                         |
| Fabricação de tecidos de malha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.292                                            | 16,7                                         |
| Acabamentos em fios, tecidos e artefatos têxteis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.204                                            | 18,8                                         |
| Fabricação de artefatos têxteis, exceto vestuário                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 594                                              | 84,9                                         |
| CONFECÇÃO DE ARTIGOS DO VESTUÁRIO E ACESSÓRIOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 510                                              | 18,5                                         |
| Confecção de artigos do vestuário e acessórios<br>Fabricação de artigos de malharia e tricotagem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 510                                              | 19,3                                         |
| PREPARAÇÃO DE COUROS E FABRICAÇÃO DE ARTEFATOS DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 310                                              | 19,5                                         |
| COURO, ARTIGOS PARA VIAGEM E CALÇADOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |                                              |
| Curtimento e outras preparações de couro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.086                                            | 0                                            |
| Fabricação de artigos para viagem e de artefatos diversos de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                                              |
| couro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.895                                            | 20                                           |
| Fabricação de calçados                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.895                                            | 19,1                                         |
| Fabricação de carçados<br>Fabricação de partes para calçados, de qualquer material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.895                                            | 21,1                                         |
| FABRICAÇÃO DE PRODUTOS DE MADEIRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.000                                            | 21,1                                         |
| Desdobramento de madeira                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                                              |
| Desdobramento de madeira                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 250                                              | 20                                           |
| Fabricação de produtos de madeira, cortiça e material trançado,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                              |
| exceto móveis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                              |
| abricação de madeira laminada e de chapas de madeira                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                              |
| compensada, prensada e aglomerada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 600                                              | 26,3                                         |
| Fabricação de estruturas de madeira e de artigos de carpintaria para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 455                                              |                                              |
| construção                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 155                                              | 26,3                                         |
| Fabricação de artefatos de tanoaria e de embalagens de madeira                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 351                                              | 26,3                                         |
| Fabricação de artefatos de madeira, palha, cortiça, vime e material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 202                                              | 00.0                                         |
| rançado não especificados anteriormente, exceto móveis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 289                                              | 26,3                                         |
| FABRICAÇÃO DE CELULOSE, PAPEL E PRODUTOS DE PAPEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                              |
| Fabricação de celulose e outras pastas para a fabricação de papel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107.683                                          | 12,7                                         |
| Fabricação de papel, cartolina e papel-cartão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                              |
| Fabricação de papel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.167                                            | 18,1                                         |
| -abricação de cartolina e papel-cartão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.159                                            | 18,1                                         |
| Fabricação de embalagens de papel, cartolina, papel-cartão e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | ·                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                              |
| papelão ondulado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | 74.7                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 409                                              | 71,7                                         |
| abricação de embalagens de papel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 409<br>607                                       | 71,7                                         |
| -abricação de embalagens de papel<br>-abricação de embalagens de cartolina e papel-cartão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | · · · · · · · · · · · · · · · · · · ·        |
| - abricação de embalagens de papel<br>- abricação de embalagens de cartolina e papel-cartão<br>- abricação de chapas e de embalagens de papelão ondulado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 607                                              | 71,7                                         |
| Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 607                                              | 71,7                                         |
| Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão e papelão ondulado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 607<br>409                                       | 71,7<br>71,7                                 |
| Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 607                                              | 71,7                                         |
| Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado para uso comercial e de escritório                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 607<br>409<br>197                                | 71,7<br>71,7<br>32,1                         |
| Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado para uso comercial e de escritório Fabricação de produtos de papel para usos doméstico e higiênico-                                                                                                                                                                                                                                                                                                                                                                                                                                              | 607<br>409                                       | 71,7<br>71,7                                 |
| Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado para uso comercial e de escritório Fabricação de produtos de papel para usos doméstico e higiênico-sanitário                                                                                                                                                                                                                                                                                                                                                                                                                                     | 607<br>409<br>197<br>6.000                       | 71,7<br>71,7<br>32,1<br>32,1                 |
| Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado para uso comercial e de escritório Fabricação de produtos de papel para usos doméstico e higiênico-sanitário Fabricação de produtos de pastas celulósicas, papel, cartolina, papel-cartão e papelão ondulado não especificados anteriormente                                                                                                                                                                                                                                                                                                     | 607<br>409<br>197                                | 71,7<br>71,7<br>32,1                         |
| Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado para uso comercial e de escritório Fabricação de produtos de papel para usos doméstico e higiênico-sanitário Fabricação de produtos de pastas celulósicas, papel, cartolina, papel-cartão e papelão ondulado não especificados anteriormente                                                                                                                                                                                                                                                                                                     | 607<br>409<br>197<br>6.000                       | 71,7<br>71,7<br>32,1<br>32,1                 |
| Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado para uso comercial e de escritório Fabricação de produtos de papel para usos doméstico e higiênico-sanitário Fabricação de produtos de pastas celulósicas, papel, cartolina, papel-cartão e papelão ondulado não especificados anteriormente  IMPRESSÃO E REPRODUÇÃO DE GRAVAÇÕES                                                                                                                                                                                                                                                                | 607<br>409<br>197<br>6.000                       | 71,7<br>71,7<br>32,1<br>32,1<br>32,1         |
| Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado para uso comercial e de escritório Fabricação de produtos de papel para usos doméstico e higiênico-sanitário Fabricação de produtos de pastas celulósicas, papel, cartolina, papel-cartão e papelão ondulado não especificados anteriormente  IMPRESSÃO E REPRODUÇÃO DE GRAVAÇÕES FABRICAÇÃO DE COQUE, DE PRODUTOS DERIVADOS DO                                                                                                                                                                                                                  | 607<br>409<br>197<br>6.000                       | 71,7<br>71,7<br>32,1<br>32,1<br>32,1         |
| Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado para uso comercial e de escritório Fabricação de produtos de papel para usos doméstico e higiênico-sanitário Fabricação de produtos de pastas celulósicas, papel, cartolina, papel-cartão e papelão ondulado não especificados anteriormente IMPRESSÃO E REPRODUÇÃO DE GRAVAÇÕES FABRICAÇÃO DE COQUE, DE PRODUTOS DERIVADOS DO PETRÓLEO E DE BIOCOMBUSTÍVEIS Coquerias                                                                                                                                                                           | 607<br>409<br>197<br>6.000                       | 71,7<br>71,7<br>32,1<br>32,1<br>32,1         |
| Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado para uso comercial e de escritório Fabricação de produtos de papel para usos doméstico e higiênico-sanitário Fabricação de produtos de pastas celulósicas, papel, cartolina, papel-cartão e papelão ondulado não especificados anteriormente IMPRESSÃO E REPRODUÇÃO DE GRAVAÇÕES FABRICAÇÃO DE COQUE, DE PRODUTOS DERIVADOS DO PETRÓLEO E DE BIOCOMBUSTÍVEIS Coquerias Fabricação de produtos derivados do petróleo                                                                                                                              | 607<br>409<br>197<br>6.000<br>321<br>173         | 71,7<br>71,7<br>32,1<br>32,1<br>32,1<br>18,8 |
| Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado para uso comercial e de escritório Fabricação de produtos de papel para usos doméstico e higiênico-sanitário Fabricação de produtos de pastas celulósicas, papel, cartolina, papel-cartão e papelão ondulado não especificados anteriormente IMPRESSÃO E REPRODUÇÃO DE GRAVAÇÕES FABRICAÇÃO DE COQUE, DE PRODUTOS DERIVADOS DO PETRÓLEO E DE BIOCOMBUSTÍVEIS Coquerias Fabricação de produtos derivados do petróleo Fabricação de produtos do refino de petróleo                                                                                 | 607<br>409<br>197<br>6.000<br>321<br>173         | 71,7<br>71,7<br>32,1<br>32,1<br>32,1<br>18,8 |
| papelão ondulado Fabricação de embalagens de papel Fabricação de embalagens de cartolina e papel-cartão Fabricação de chapas e de embalagens de papelão ondulado Fabricação de produtos diversos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado Fabricação de produtos de papel, cartolina, papel-cartão e papelão ondulado para uso comercial e de escritório Fabricação de produtos de papel para usos doméstico e higiênicosanitário Fabricação de produtos de pastas celulósicas, papel, cartolina, papelcartão e papelão ondulado não especificados anteriormente IMPRESSÃO E REPRODUÇÃO DE GRAVAÇÕES FABRICAÇÃO DE COQUE, DE PRODUTOS DERIVADOS DO PETRÓLEO E DE BIOCOMBUSTÍVEIS Coquerias Fabricação de produtos derivados do petróleo Fabricação de produtos do refino de petróleo Fabricação de produtos derivados do petróleo, exceto produtos do | 607<br>409<br>197<br>6.000<br>321<br>173         | 71,7<br>71,7<br>32,1<br>32,1<br>32,1<br>18,8 |





| Classificação Nacional das Atividades Econômicas – CNAE 2.0                                         | Coeficiente de Retirada<br>(Litros.empregado.dia-1) | Continuação. Coeficiente de Consumo (%) |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|
| Fabricação de biocombustíveis                                                                       | 19.192                                              | 100                                     |
| FABRICAÇÃO DE PRODUTOS QUÍMICOS                                                                     |                                                     |                                         |
| Fabricação de produtos químicos inorgânicos                                                         |                                                     |                                         |
| Fabricação de cloro e álcalis                                                                       | 5.323                                               | 29,2                                    |
| Fabricação de intermediários para fertilizantes                                                     | 2.929                                               | 29,2                                    |
| Fabricação de adubos e fertilizantes                                                                | 2.941                                               | 29,2                                    |
| Fabricação de gases industriais                                                                     | 2.880                                               | 29,2                                    |
| Fabricação de produtos químicos inorgânicos não especificados anteriormente                         | 2.220                                               | 29,2                                    |
| Fabricação de produtos químicos orgânicos                                                           |                                                     |                                         |
| Fabricação de produtos petroquímicos básicos                                                        | 2.172                                               | 53,6                                    |
| Fabricação de intermediários para plastificantes, resinas e fibras                                  | 7.185                                               | 53,6                                    |
| Fabricação de produtos químicos orgânicos não especificados                                         | 7.105                                               | 33,0                                    |
| anteriormente                                                                                       | 7.185                                               | 53,6                                    |
| Fabricação de resinas e elastômeros                                                                 |                                                     |                                         |
| Fabricação de resinas termoplásticas                                                                | 4.014                                               | 61,7                                    |
| Fabricação de resinas termoplasticas                                                                | 362                                                 | 61.7                                    |
| ,                                                                                                   | 16.687                                              | 61,7                                    |
| Fabricação de elastômeros  Fabricação de fibras artificiais e sintéticas                            | 10.007                                              | 01,7                                    |
| -                                                                                                   | 752                                                 | 20                                      |
| Fabricação de fibras artificiais e sintéticas                                                       | 752                                                 | 20                                      |
| Fabricação de defensivos agrícolas e desinfestantes                                                 | 2.077                                               | 32                                      |
| domissanitários                                                                                     |                                                     |                                         |
| Fabricação de sabões, detergentes, produtos de limpeza,                                             |                                                     |                                         |
| cosméticos, produtos de perfumaria e de higiene pessoal                                             | 4.405                                               | 40.5                                    |
| Fabricação de sabões e detergentes sintéticos                                                       | 1.165                                               | 48,5                                    |
| Fabricação de produtos de limpeza e polimento                                                       | 447                                                 | 48,5                                    |
| Fabricação de cosméticos, produtos de perfumaria e de higiene                                       | 417                                                 | 48,5                                    |
| pessoal                                                                                             |                                                     |                                         |
| Fabricação de tintas, vernizes, esmaltes, lacas e produtos afins                                    | 400                                                 | 70                                      |
| Fabricação de tintas, vernizes, esmaltes e lacas                                                    | 186                                                 | 70                                      |
| Fabricação de tintas de impressão                                                                   | 520                                                 | 70                                      |
| Fabricação de impermeabilizantes, solventes e produtos afins                                        | 494                                                 | 70                                      |
| Fabricação de produtos e preparados químicos diversos                                               | 4.440                                               | 0.0                                     |
| Fabricação de adesivos e selantes                                                                   | 1.110                                               | 8,3                                     |
| Fabricação de explosivos                                                                            | 567                                                 | 8,3                                     |
| Fabricação de aditivos de uso industrial                                                            | 771                                                 | 8,3                                     |
| Fabricação de catalisadores                                                                         | 2.978                                               | 8,3                                     |
| Fabricação de produtos químicos não especificados anteriormente                                     | 1.954                                               | 8,3                                     |
| FABRICAÇÃO DE PRODUTOS FARMOQUÍMICOS E                                                              |                                                     |                                         |
| FARMACÊUTICOS                                                                                       | 4.057                                               |                                         |
| Fabricação de produtos farmoquímicos                                                                | 1.257                                               | 20                                      |
| Fabricação de produtos farmacêuticos                                                                | 400                                                 |                                         |
| Fabricação de medicamentos para uso humano                                                          | 499                                                 | 20                                      |
| Fabricação de medicamentos para uso veterinário                                                     | 1.103                                               | 20                                      |
| Fabricação de preparações farmacêuticas  FABRICAÇÃO DE PRODUTOS DE BORRACHA E DE MATERIAL  PLÁCTICA | 146                                                 | 20                                      |
| PLÁSTICO                                                                                            |                                                     |                                         |
| Fabricação de produtos de borracha                                                                  | 4.440                                               |                                         |
| Fabricação de pneumáticos e de câmaras-de-ar                                                        | 1.440                                               | 20                                      |
| Reforma de pneumáticos usados                                                                       | 411                                                 | 20                                      |
| Fabricação de artefatos de borracha não especificados anteriormente                                 | 196                                                 | 20                                      |
| Fabricação de produtos de material plástico                                                         |                                                     |                                         |
| Fabricação de laminados planos e tubulares de material plástico                                     | 188                                                 | 21,7                                    |
| Fabricação de embalagens de material plástico                                                       | 149                                                 | 21,7                                    |
| Fabricação de tubos e acessórios de material plástico para uso na construção                        | 148                                                 | 21,7                                    |
| Fabricação de artefatos de material plástico não especificados anteriormente                        | 157                                                 | 21,7                                    |
| 177                                                                                                 |                                                     |                                         |

Continua.





Continuação.

| Classificação Nacional das Atividades Econômicas – CNAE 2.0                                     | Coeficiente de Retirada (Litros.empregado.dia-1) | Coeficiente de<br>Consumo (%) |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------|
| FABRICAÇÃO DE PRODUTOS DE MINERAIS NÃO-METÁLICOS                                                |                                                  |                               |
| Fabricação de vidro e de produtos do vidro                                                      |                                                  |                               |
| Fabricação de vidro plano e de segurança                                                        | 2.636                                            | 17,2                          |
| Fabricação de embalagens de vidro                                                               | 1.880                                            | 17,2                          |
| Fabricação de artigos de vidro                                                                  | 1.880                                            | 17,2                          |
| Fabricação de cimento                                                                           |                                                  |                               |
| Fabricação de cimento                                                                           | 2.629                                            | 100                           |
| Fabricação de artefatos de concreto, cimento, fibrocimento,                                     | 547                                              | 100                           |
| gesso e materiais semelhantes                                                                   |                                                  |                               |
| Fabricação de produtos cerâmicos                                                                | 070                                              | 04.0                          |
| Fabricação de produtos cerâmicos refratários                                                    | 379                                              | 21,2                          |
| Fabricação de produtos cerâmicos não-refratários para uso estrutural na construção              | 190                                              | 21,2                          |
| Fabricação de produtos cerâmicos não-refratários não especificados anteriormente                | 155                                              | 21,2                          |
| Aparelhamento de pedras e fabricação de outros produtos de<br>minerais não-metálicos            |                                                  |                               |
| Aparelhamento e outros trabalhos em pedras                                                      | 360                                              | 20,3                          |
| Fabricação de cal e gesso                                                                       | 2.546                                            | 20,3                          |
| Fabricação de produtos de minerais não-metálicos não especificados                              |                                                  |                               |
| anteriormente                                                                                   | 1.000                                            | 20,3                          |
| METALURGIA                                                                                      |                                                  |                               |
| Produção de ferro-gusa e de ferroligas                                                          |                                                  |                               |
| Produção de ferro-gusa                                                                          | 3.034                                            | 21,7                          |
| Produção de ferroligas                                                                          | 5.708                                            | 21,7                          |
| Siderurgia                                                                                      |                                                  |                               |
| Produção de semi-acabados de aço                                                                | 19.600                                           | 25,9                          |
| Produção de laminados planos de aço                                                             | 9.626                                            | 25,9                          |
| Produção de laminados longos de aço                                                             | 6.419                                            | 25,9                          |
| Produção de relaminados, trefilados e perfilados de aço                                         | 1.477                                            | 25,9                          |
| Produção de tubos de aço, exceto tubos sem costura                                              |                                                  |                               |
| Produção de tubos de aço com costura                                                            | 305                                              | 20                            |
| Produção de outros tubos de ferro e aço                                                         | 885                                              | 20                            |
| Metalurgia dos metais não-ferrosos                                                              |                                                  |                               |
| Metalurgia do alumínio e suas ligas                                                             | 1.286                                            | 20                            |
| Metalurgia dos metais preciosos                                                                 | 19.415                                           | 20                            |
| Metalurgia do cobre                                                                             | 5.462                                            | 20                            |
| Metalurgia dos metais não-ferrosos e suas ligas não especificados                               | 4.849                                            | 20                            |
| anteriormente                                                                                   | 1.010                                            |                               |
| Fundição                                                                                        |                                                  |                               |
| Fundição de ferro e aço                                                                         | 164                                              | 20                            |
| Fundição de metais não-ferrosos e suas ligas FABRICAÇÃO DE PRODUTOS DE METAL, EXCETO MÁQUINAS E | 240                                              | 20                            |
| EQUIPAMENTOS                                                                                    |                                                  |                               |
| Fabricação de estruturas metálicas e obras de caldeiraria pesada                                | 173                                              | 46,8                          |
| Fabricação de tanques, reservatórios metálicos e caldeiras                                      | 212                                              | 46,8                          |
| Forjaria, estamparia, metalurgia do pó e serviços de tratamento<br>de metais                    | 337                                              | 46,8                          |
| Fabricação de artigos de cutelaria, de serralheria e ferramentas                                | 143                                              | 46,8                          |
| Fabricação de equipamento bélico pesado, armas de fogo e<br>munições                            | 683                                              | 46,8                          |
| Fabricação de produtos de metal não especificados anteriormente                                 | 369                                              | 46,8                          |
| FABRICAÇÃO DE EQUIPAMENTOS DE INFORMÁTICA,                                                      | 182                                              | 20                            |
| PRODUTOS ELETRÓNICOS E ÓPTICOS                                                                  |                                                  |                               |
| PRODUTOS ELETRÔNICOS E ÓPTICOS<br>FABRICAÇÃO DE MÁQUINAS, APARELHOS E MATERIAIS<br>ELÉTRICOS    | 167                                              | 20                            |

Continua.





Continuação.

| Classificação Nacional das Atividades Econômicas – CNAE 2.0                     | Coeficiente de Retirada (Litros.empregado.dia-1) | Coeficiente de<br>Consumo (%) |
|---------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------|
| FABRICAÇÃO DE VEÍCULOS AUTOMOTORES, REBOQUES E<br>CARROCERIAS                   |                                                  |                               |
| Fabricação de automóveis, camionetas e utilitários                              | 405                                              | 18                            |
| Fabricação de caminhões e ônibus                                                | 183                                              | 17,8                          |
| Fabricação de cabines, carrocerias e reboques para veículos automotores         | 84                                               | 20                            |
| Fabricação de peças e acessórios para veículos automotores                      | 212                                              | 38,1                          |
| Recondicionamento e recuperação de motores para veículos automotores            | 168                                              | 20                            |
| FABRICAÇÃO DE OUTROS EQUIPAMENTOS DE TRANSPORTE,<br>EXCETO VEÍCULOS AUTOMOTORES |                                                  |                               |
| Construção de embarcações                                                       | 1.950                                            | 20                            |
| Fabricação de veículos ferroviários                                             | 432                                              | 20                            |
| Fabricação de aeronaves                                                         | 165                                              | 12,4                          |
| Fabricação de veículos militares de combate                                     | 213                                              | 20                            |
| Fabricação de equipamentos de transporte não especificados<br>anteriormente     | 174                                              | 20                            |
| FABRICAÇÃO DE MÓVEIS                                                            | 98                                               | 20                            |
| FABRICAÇÃO DE PRODUTOS DIVERSOS                                                 | 842                                              | 20                            |
| MANUTENÇÃO, REPARAÇÃO E INSTALAÇÃO DE MÁQUINAS E<br>EQUIPAMENTOS                | 162                                              | 20                            |

Fonte: ANA (2017).

A vazão captada foi, então, obtida pelo produto do número de empregados das classes industriais pelos respectivos coeficientes de retirada, expressa pela Equação 5.13.

$$Q_{captada} = N_{(classe)}.q_{ret.(classe)}$$

Equação 5.13

Em que:

Q<sub>captada</sub> = vazão captada para fins industriais (I/dia);

N = número de empregados por classe (empregados); e,

q<sub>ret.</sub> = coeficiente de retirada da classe (l.empregados/dia).

Para obtenção da vazão de consumo multiplicou-se a vazão captada pelos coeficientes de consumo de cada classe, como explicita a Equação 5.14.

$$Q_{consumo} = Q_{captada}.K_{cons.(classe)}$$

Equação 5.14

Sendo:

Q<sub>cconsumo</sub> = vazão de consumo industrial (I/dia); e,

K<sub>cons.</sub> = coeficiente de consumo da classe (%).

Por fim, a vazão de retorno se deu pela diferença entre a vazão captada e a vazão consumida, conforme Equação 5.15.

$$Q_{retorno} = Q_{cantada} - Q_{consumo}$$

Equação 5.15

Em que:

Q<sub>retorno</sub> = vazão de retorno dos usos industriais (l/dia).





# 4.5.1 Resultados

Na sequência, a Tabela 4.9 apresenta os resultados das estimativas de vazões para uso industrial.

Tabela 4.9 - Demandas hídricas para uso industrial.

| B                   |                          | 2009                     |                          |             | 2010                     |                          |             | 2011                     |                          |             | 2012                     |                          |
|---------------------|--------------------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|
| Município           | Qcap (m <sup>3</sup> /s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) |
| Abdon Batista       | 0,0000                   | 0,0000                   | 0,0000                   | 0,0000      | 0,0000                   | 0,0000                   | 0,0000      | 0,000                    | 0,0000                   | 0,0001      | 0,000                    | 0,0000                   |
| Anita Garibaldi     | 0,0035                   | 0,0020                   | 0,0016                   | 0,0023      | 0,0007                   | 0,0016                   | 0,0026      | 0,0008                   | 0,0019                   | 0,0021      | 0,0006                   | 0,0015                   |
| Bocaina do Sul      | 0,0001                   | 0,0001                   | 0,0000                   | 0,0001      | 0,0001                   | 0,0000                   | 0,0001      | 0,0001                   | 0,0000                   | 0,0002      | 0,0002                   | 0,0000                   |
| Bom Retiro          | 0,0016                   | 0,0012                   | 0,0004                   | 0,0019      | 0,0014                   | 0,0005                   | 0,0022      | 0,0017                   | 0,0005                   | 0,0018      | 0,0014                   | 0,0004                   |
| Brunópolis          | 0,0001                   | 0,0001                   | 0,0000                   | 0,0001      | 0,0001                   | 0,0001                   | 0,0001      | 0,0001                   | 0,0001                   | 0,0001      | 0,0001                   | 0,0000                   |
| Campos Novos        | 0,0062                   | 0,0045                   | 0,0017                   | 0,0062      | 0,0043                   | 0,0019                   | 0,0081      | 0,0058                   | 0,0023                   | 0,0089      | 0,0064                   | 0,0025                   |
| Celso Ramos         | 0,0001                   | 0,0001                   | 0,0000                   | 0,0002      | 0,0002                   | 0,0000                   | 0,0003      | 0,0002                   | 0,0001                   | 0,0005      | 0,0003                   | 0,0001                   |
| Cerro Negro         | 0,0001                   | 0,0001                   | 0,0000                   | 0,0001      | 0,0001                   | 0,0000                   | 0,0001      | 0,0001                   | 0,0000                   | 0,0001      | 0,0001                   | 0,0000                   |
| Correia Pinto       | 0,0021                   | 0,0016                   | 0,0006                   | 0,0036      | 0,0027                   | 0,0009                   | 0,0018      | 0,0012                   | 0,0006                   | 0,0020      | 0,0014                   | 0,0006                   |
| Curitibanos         | 0,0539                   | 0,0450                   | 0,0089                   | 0,0158      | 0,0115                   | 0,0043                   | 0,0169      | 0,0122                   | 0,0048                   | 0,0204      | 0,0153                   | 0,0051                   |
| Lages               | 0,0746                   | 0,0608                   | 0,0138                   | 0,0866      | 0,0697                   | 0,0169                   | 0,0418      | 0,0305                   | 0,0113                   | 0,0916      | 0,0738                   | 0,0178                   |
| Otacílio Costa      | 0,0059                   | 0,0044                   | 0,0015                   | 0,0091      | 0,0069                   | 0,0022                   | 0,0065      | 0,0049                   | 0,0016                   | 0,0098      | 0,0076                   | 0,0023                   |
| Palmeira            | 0,0038                   | 0,0023                   | 0,0015                   | 0,0030      | 0,0019                   | 0,0012                   | 0,0037      | 0,0023                   | 0,0015                   | 0,0046      | 0,0028                   | 0,0018                   |
| Ponte Alta          | 0,0005                   | 0,0004                   | 0,0001                   | 0,0005      | 0,0004                   | 0,0001                   | 0,0004      | 0,0003                   | 0,0001                   | 0,0005      | 0,0004                   | 0,0001                   |
| Rio Rufino          | 0,0000                   | 0,0000                   | 0,0000                   | 0,0003      | 0,0002                   | 0,0001                   | 0,0004      | 0,0003                   | 0,0001                   | 0,0004      | 0,0003                   | 0,0001                   |
| São José do Cerrito | 0,0002                   | 0,0001                   | 0,0000                   | 0,0002      | 0,0002                   | 0,0000                   | 0,0002      | 0,0002                   | 0,0000                   | 0,0002      | 0,0002                   | 0,0000                   |
| Urubici             | 0,0009                   | 0,0007                   | 0,0003                   | 0,0010      | 0,0008                   | 0,0003                   | 0,0006      | 0,0005                   | 0,0001                   | 0,0007      | 0,0005                   | 0,0002                   |
| Vargem              | 0,0006                   | 0,0004                   | 0,0002                   | 0,0005      | 0,0004                   | 0,0001                   | 0,0004      | 0,0003                   | 0,0001                   | 0,0003      | 0,0002                   | 0,0001                   |
| Total               | 0,1543                   | 0,1238                   | 0,0305                   | 0,1317      | 0,1015                   | 0,0302                   | 0,0863      | 0,0613                   | 0,0250                   | 0,1441      | 0,1114                   | 0,0327                   |

Continua.





Continuação.

| Manulafula          |                          | 2013                     |                          |             | 2014                     |                          |             | 2015                     |                          |             | 2016                     | _                        |
|---------------------|--------------------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|
| Município           | Qcap (m <sup>3</sup> /s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) |
| Abdon Batista       | 0,0002                   | 0,0002                   | 0,0000                   | 0,0004      | 0,0003                   | 0,0001                   | 0,0001      | 0,0001                   | 0,0000                   | 0,0001      | 0,000                    | 0,0000                   |
| Anita Garibaldi     | 0,0021                   | 0,0006                   | 0,0015                   | 0,0012      | 0,0006                   | 0,0006                   | 0,0012      | 0,0006                   | 0,0006                   | 0,0011      | 0,0005                   | 0,0005                   |
| Bocaina do Sul      | 0,0002                   | 0,0002                   | 0,0000                   | 0,0002      | 0,0001                   | 0,0000                   | 0,0002      | 0,0002                   | 0,0000                   | 0,0001      | 0,0001                   | 0,0000                   |
| Bom Retiro          | 0,0012                   | 0,0009                   | 0,0002                   | 0,0019      | 0,0015                   | 0,0004                   | 0,0014      | 0,0011                   | 0,0003                   | 0,0012      | 0,0010                   | 0,0003                   |
| Brunópolis          | 0,0001                   | 0,0000                   | 0,0000                   | 0,0001      | 0,0001                   | 0,0000                   | 0,0001      | 0,0001                   | 0,0001                   | 0,0003      | 0,0002                   | 0,0001                   |
| Campos Novos        | 0,0164                   | 0,0126                   | 0,0038                   | 0,0160      | 0,0122                   | 0,0037                   | 0,0180      | 0,0136                   | 0,0044                   | 0,0131      | 0,0097                   | 0,0035                   |
| Celso Ramos         | 0,0006                   | 0,0004                   | 0,0002                   | 0,0006      | 0,0004                   | 0,0002                   | 0,0001      | 0,0001                   | 0,0000                   | 0,0002      | 0,0001                   | 0,0001                   |
| Cerro Negro         | 0,0003                   | 0,0001                   | 0,0001                   | 0,0001      | 0,0001                   | 0,0000                   | 0,0002      | 0,0001                   | 0,0001                   | 0,0002      | 0,0001                   | 0,0001                   |
| Correia Pinto       | 0,0044                   | 0,0034                   | 0,0010                   | 0,0046      | 0,0035                   | 0,0012                   | 0,0042      | 0,0032                   | 0,0011                   | 0,0040      | 0,0030                   | 0,0010                   |
| Curitibanos         | 0,0169                   | 0,0124                   | 0,0046                   | 0,0179      | 0,0131                   | 0,0048                   | 0,0205      | 0,0151                   | 0,0053                   | 0,0192      | 0,0145                   | 0,0048                   |
| Lages               | 0,0949                   | 0,0763                   | 0,0186                   | 0,0497      | 0,0364                   | 0,0133                   | 0,0892      | 0,0713                   | 0,0179                   | 0,0419      | 0,0312                   | 0,0107                   |
| Otacílio Costa      | 0,0064                   | 0,0049                   | 0,0015                   | 0,0075      | 0,0058                   | 0,0017                   | 0,0062      | 0,0048                   | 0,0014                   | 0,0049      | 0,0035                   | 0,0013                   |
| Palmeira            | 0,0038                   | 0,0023                   | 0,0016                   | 0,0035      | 0,0021                   | 0,0014                   | 0,0035      | 0,0021                   | 0,0014                   | 0,0055      | 0,0032                   | 0,0023                   |
| Ponte Alta          | 0,0005                   | 0,0004                   | 0,0001                   | 0,0008      | 0,0006                   | 0,0002                   | 0,0008      | 0,0006                   | 0,0002                   | 0,0008      | 0,0007                   | 0,0002                   |
| Rio Rufino          | 0,0007                   | 0,0006                   | 0,0001                   | 0,0004      | 0,0003                   | 0,0001                   | 0,0004      | 0,0003                   | 0,0001                   | 0,0004      | 0,0003                   | 0,0001                   |
| São José do Cerrito | 0,0002                   | 0,0002                   | 0,0000                   | 0,0003      | 0,0002                   | 0,0001                   | 0,0002      | 0,0002                   | 0,0000                   | 0,0002      | 0,0002                   | 0,0001                   |
| Urubici             | 0,0008                   | 0,0006                   | 0,0002                   | 0,0008      | 0,0006                   | 0,0002                   | 0,0006      | 0,0004                   | 0,0002                   | 0,0008      | 0,0006                   | 0,0002                   |
| Vargem              | 0,0007                   | 0,0005                   | 0,0002                   | 0,0007      | 0,0005                   | 0,0002                   | 0,0006      | 0,0005                   | 0,0002                   | 0,0007      | 0,0005                   | 0,0002                   |
| Total               | 0,1504                   | 0,1165                   | 0,0338                   | 0,1067      | 0,0785                   | 0,0281                   | 0,1476      | 0,1143                   | 0,0333                   | 0,0948      | 0,0693                   | 0,0255                   |

Continua.





Continuação.

| Manalaíala          |                          | 2017                     |                          |             | 2018                     |                          |             | 2019                     |                          |
|---------------------|--------------------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|
| Município           | Qcap (m <sup>3</sup> /s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m <sup>3</sup> /s) | Qcon (m <sup>3</sup> /s) |
| Abdon Batista       | 0,0002                   | 0,0001                   | 0,0000                   | 0,0001      | 0,0001                   | 0,0000                   | 0,0000      | 0,0000                   | 0,0000                   |
| Anita Garibaldi     | 0,0011                   | 0,0005                   | 0,0005                   | 0,0011      | 0,0007                   | 0,0004                   | 0,0017      | 0,0012                   | 0,0005                   |
| Bocaina do Sul      | 0,0001                   | 0,0001                   | 0,0000                   | 0,0001      | 0,0001                   | 0,0000                   | 0,0003      | 0,0002                   | 0,0001                   |
| Bom Retiro          | 0,0013                   | 0,0010                   | 0,0003                   | 0,0014      | 0,0011                   | 0,0003                   | 0,0020      | 0,0016                   | 0,0004                   |
| Brunópolis          | 0,0006                   | 0,0003                   | 0,0003                   | 0,0007      | 0,0004                   | 0,0003                   | 0,0007      | 0,0004                   | 0,0003                   |
| Campos Novos        | 0,0103                   | 0,0075                   | 0,0028                   | 0,0126      | 0,0092                   | 0,0034                   | 0,0178      | 0,0130                   | 0,0049                   |
| Celso Ramos         | 0,0003                   | 0,0002                   | 0,0001                   | 0,0002      | 0,0001                   | 0,0001                   | 0,0002      | 0,0001                   | 0,0000                   |
| Cerro Negro         | 0,0002                   | 0,0001                   | 0,0001                   | 0,0002      | 0,0001                   | 0,0001                   | 0,0003      | 0,0001                   | 0,0002                   |
| Correia Pinto       | 0,0020                   | 0,0013                   | 0,0007                   | 0,0025      | 0,0018                   | 0,0007                   | 0,0029      | 0,0021                   | 0,0007                   |
| Curitibanos         | 0,0176                   | 0,0131                   | 0,0045                   | 0,0181      | 0,0134                   | 0,0047                   | 0,0164      | 0,0121                   | 0,0043                   |
| Lages               | 0,0465                   | 0,0341                   | 0,0123                   | 0,0455      | 0,0336                   | 0,0119                   | 0,0534      | 0,0397                   | 0,0137                   |
| Otacílio Costa      | 0,0045                   | 0,0034                   | 0,0011                   | 0,0038      | 0,0027                   | 0,0011                   | 0,0050      | 0,0037                   | 0,0013                   |
| Palmeira            | 0,0044                   | 0,0022                   | 0,0021                   | 0,0048      | 0,0028                   | 0,0020                   | 0,0055      | 0,0032                   | 0,0023                   |
| Ponte Alta          | 0,0007                   | 0,0005                   | 0,0002                   | 0,0012      | 0,0010                   | 0,0003                   | 0,0011      | 0,0009                   | 0,0003                   |
| Rio Rufino          | 0,0003                   | 0,0003                   | 0,0001                   | 0,0004      | 0,0003                   | 0,0001                   | 0,0005      | 0,0004                   | 0,0001                   |
| São José do Cerrito | 0,0002                   | 0,0002                   | 0,0000                   | 0,0005      | 0,0004                   | 0,0001                   | 0,0005      | 0,0004                   | 0,0001                   |
| Urubici             | 0,0007                   | 0,0005                   | 0,0002                   | 0,0011      | 0,0008                   | 0,0003                   | 0,0010      | 0,0008                   | 0,0003                   |
| Vargem              | 0,0006                   | 0,0004                   | 0,0002                   | 0,0006      | 0,0004                   | 0,0002                   | 0,0001      | 0,0001                   | 0,0000                   |
| Total               | 0,0914                   | 0,0660                   | 0,0254                   | 0,0948      | 0,0690                   | 0,0258                   | 0,1094      | 0,0799                   | 0,0295                   |

Nota: Qcap = vazão captada; Qret = vazão de retorno e Qcon = vazão consumida.





# CENÁRIOS DE USOS DA ÁGUA

Objetivando identificar tendências de comportamento das demandas hídricas na área de estudo, foram elaborados cenários de usos múltiplos da água considerando quatro (4) horizontes temporais, quais sejam: atual (2021); curto prazo (2022); médio prazo (2030) e longo prazo (2040).

Neste contexto, os cenários são apresentados a seguir, contemplando todos os setores usuários de água.

#### 5.1 **Usos Consuntivos**

No que se refere aos usos consuntivos, em virtude da indisponibilidade de dados atuais para a estimativa das séries de vazões, os resultados referentes ao cenário atual foram fruto, assim como os demais, de extrapolações a partir das informações disponíveis já apresentadas no item 4 (ESTIMATIVA DAS SÉRIE DE VAZÕES DE USOS CONSUNTIVOS).

### 5.1.1 Abastecimento Urbano

Como influência no abastecimento urbano, registra-se a crescente privatização de serviços públicos de água e esgoto, bem como a aprimoração do gerenciamento do setor de saneamento e de gestão de recursos hídricos. Há de se considerar, também, o significativo desenvolvimento tecnológico que vem ocorrendo nesse campo, principalmente no que se refere aos sistemas de tratamento de água e de esgotos. Como consequência, verifica-se, a nível nacional, o aumento da cobertura devido à melhoria da relação custo/benefício na execução de sistemas de abastecimento de água e de coleta de esgotos.

Diante das tendências do setor e, sobretudo, do Marco Legal do Saneamento, estabelecido pela Lei 14.026, de 15 de julho de 2020 (BRASIL, 2020), é plausível supor alterações nos padrões de consumo de água bem como no índice de perdas e retorno, coeficientes utilizados nas estimativas das demandas hídricas. Entretanto, a indisponibilidade de informações locais acerca desses três (3) parâmetros dificulta a previsibilidade dessas alterações a nível municipal. Assim, para as estimativas das demandas de abastecimento urbano dos cenários propostos, optou-se pela manutenção dos valores de consumo per capita e índices de perda e retorno aplicados no item 4.1 (Abastecimento Urbano).

No que se refere à população urbana, com base nos dados dos censos demográficos de 2000 e 2010, disponibilizados por PNUD; FJP e Ipea (2020), foram aplicadas projeções geométricas para a obtenção das populações urbanas para os anos de 2021 (cenário atual), 2022 (cenário curto), 2030 (cenário médio) e 2040 (cenário longo), estando estas apresentadas na Tabela 5.1.





Tabela 5.1 - Populações urbanas extrapoladas para os anos de 2021, 2022, 2030 e 2040.

| Município           | 2021    | 2022    | 2030    | 2040    |
|---------------------|---------|---------|---------|---------|
| Abdon Batista       | 998     | 1.027   | 1.297   | 1.737   |
| Anita Garibaldi     | 5.318   | 5.394   | 6.042   | 6.961   |
| Bocaina do Sul      | 2.279   | 2.463   | 4.595   | 10.016  |
| Bom Retiro          | 8.380   | 8.586   | 10.425  | 13.287  |
| Brunópolis          | 675     | 672     | 651     | 626     |
| Campos Novos        | 35.357  | 36.227  | 44.001  | 56.104  |
| Celso Ramos         | 952     | 959     | 1.022   | 1.106   |
| Cerro Negro         | 1.217   | 1.269   | 1.780   | 2.718   |
| Correia Pinto       | 11.197  | 11.125  | 10.564  | 9.903   |
| Curitibanos         | 38.804  | 39.194  | 42.452  | 46.909  |
| Lages               | 165.114 | 166.169 | 174.860 | 186.365 |
| Otacílio Costa      | 18.765  | 19.163  | 22.672  | 27.976  |
| Palmeira            | 1.180   | 1.207   | 1.441   | 1.799   |
| Ponte Alta          | 3.928   | 3.962   | 4.240   | 4.616   |
| Rio Rufino          | 1.096   | 1.143   | 1.603   | 2.447   |
| São José do Cerrito | 3.001   | 3.052   | 3.493   | 4.136   |
| Urubici             | 8.426   | 8.562   | 9.732   | 11.422  |
| Vargem              | 1.405   | 1.464   | 2.030   | 3.055   |

Em seguida, a metodologia aplicada para estimar as vazões de retirada, de retorno e de consumo com fins de abastecimento urbano foi análoga à apresentada no item 4.1 (Abastecimento Urbano).

### 5.1.2 Abastecimento Rural

Assim como para o abastecimento urbano, as tendências relacionadas ao saneamento e à gestão dos recursos hídricos também influenciam nas variáveis de consumo e retorno da água destinadas à população rural. Analogamente, diante da indisponibilidade de dados já narrada, foram mantidos os valores anteriormente utilizados no item 4.2 (Abastecimento Rural).

A população rural para os anos de 2021, 2022, 2030 e 2040, apresentadas na Tabela 5.2, também foi obtida por meio da aplicação de projeções geométricas a partir dos dados dos censos de 2000 e 2010 advindos de PNUD; FJP; Ipea (2020). Cabe relembrar que esses dados foram ajustados considerando o critério da porção municipal pertencente à área de estudo, conforme já detalhado anteriormente.





Tabela 5.2 - Populações rurais extrapoladas e ajustadas para os anos de 2021, 2022, 2030 e 2040.

| Município           | 2021  | 2022  | 2030  | 2040  |
|---------------------|-------|-------|-------|-------|
| Abdon Batista       | 1.545 | 1.515 | 1.289 | 1.054 |
| Anita Garibaldi     | 1.476 | 1.436 | 1.154 | 877   |
| Bocaina do Sul      | 1.986 | 1.958 | 1.748 | 1.516 |
| Bom Retiro          | 1.941 | 1.920 | 1.755 | 1.568 |
| Brunópolis          | 1.867 | 1.844 | 1.667 | 1.469 |
| Campos Novos        | 3.105 | 3.015 | 2.383 | 1.776 |
| Celso Ramos         | 804   | 789   | 680   | 564   |
| Cerro Negro         | 835   | 808   | 619   | 444   |
| Correia Pinto       | 2.216 | 2.172 | 1.850 | 1.514 |
| Curitibanos         | 2.499 | 2.460 | 2.165 | 1.846 |
| Lages               | 898   | 867   | 654   | 459   |
| Otacílio Costa      | 871   | 842   | 642   | 458   |
| Palmeira            | 1.779 | 1.812 | 2.105 | 2.537 |
| Ponte Alta          | 1.105 | 1.087 | 958   | 817   |
| Rio Rufino          | 1.761 | 1.763 | 1.773 | 1.785 |
| São José do Cerrito | 5.614 | 5.519 | 4.810 | 4.052 |
| Urubici             | 2.272 | 2.252 | 2.092 | 1.908 |
| Vargem              | 1.481 | 1.447 | 1.202 | 953   |

Em seguida, a metodologia aplicada para estimar as vazões de retirada, de retorno e de consumo com fins de abastecimento rural foi equivalente à descrita no item 4.2 (Abastecimento Rural).

### 5.1.3 Criação Animal

A estimativa de cenários dos usos da água para o setor de criação animal foi realizada exclusivamente em função dos efetivos de rebanho em cada município, divulgados por IBGE (2020), com dados de 2009 a 2019. A partir daí, foi aplicada regressão linear, que reflete a tendência de evolução para cada uma das espécies, projetando-se, assim, os rebanhos para os anos de 2021, 2022, 2030 e 2040.

Por se tratar de metodologia matemática, em alguns casos, na ocorrência de tendência de decréscimo, obtiveram-se números negativos para os rebanhos. Especificamente para esses casos, realizou-se, novamente, a regressão linear considerando os dados a partir de 2014. Quando, ainda assim, obtiveram-se resultados negativos, considerou-se que o rebanho da respectiva espécie seria nulo para o ano em análise.

Na sequência, a Tabela 5.3 até Tabela 5.6 apresentam os efetivos de rebanhos dos municípios analisados para os diferentes cenários. Cabe relembrar que esses dados foram ajustados considerando o critério da porção municipal pertencente à área de estudo, conforme já detalhado anteriormente.





Tabela 5.3 - Número de rebanhos extrapolados e ajustados para 2021.

| Município           |        |          |        | 2      | 021     |       |            |          |
|---------------------|--------|----------|--------|--------|---------|-------|------------|----------|
| Município -         | Bovino | Bubalino | Equino | Suíno  | Caprino | Ovino | Galináceos | Codornas |
| Abdon Batista       | 15.255 | 0        | 126    | 4.361  | 41      | 148   | 13.016     | 0        |
| Anita Garibaldi     | 18.745 | 2        | 721    | 1.445  | 87      | 825   | 12.793     | 317      |
| Bocaina do Sul      | 18.963 | 18       | 1.278  | 851    | 85      | 1.334 | 6.217      | 26       |
| Bom Retiro          | 25.010 | 3        | 1.108  | 933    | 117     | 6.117 | 1.107.932  | 68       |
| Brunópolis          | 12.307 | 0        | 305    | 5.908  | 0       | 494   | 9.738      | 4        |
| Campos Novos        | 46.417 | 28       | 971    | 97.783 | 241     | 4.781 | 1.353.681  | 0        |
| Celso Ramos         | 6.272  | 0        | 100    | 1.172  | 54      | 86    | 4.569      | 0        |
| Cerro Negro         | 7.377  | 0        | 306    | 1.263  | 43      | 373   | 3.812      | 15       |
| Correia Pinto       | 29.819 | 2        | 1.871  | 1.909  | 187     | 1.778 | 223.886    | 15       |
| Curitibanos         | 33.069 | 13       | 981    | 34.698 | 4       | 4.626 | 9.308      | 118      |
| Lages               | 43.458 | 77       | 3.413  | 1.037  | 30      | 4.941 | 50.426     | 247      |
| Otacílio Costa      | 17.491 | 3        | 559    | 3.136  | 33      | 1.316 | 6.664      | 24       |
| Palmeira            | 11.794 | 45       | 713    | 77     | 9       | 1.076 | 5.116      | 36       |
| Ponte Alta          | 15.727 | 0        | 542    | 833    | 10      | 1.204 | 230.989    | 91       |
| Rio Rufino          | 10.542 | 0        | 503    | 1.165  | 60      | 405   | 4.044      | 0        |
| São José do Cerrito | 51.598 | 12       | 1.545  | 4.422  | 266     | 3.255 | 29.671     | 60       |
| Urubici             | 29.779 | 204      | 1.282  | 509    | 112     | 795   | 5.497      | 12       |
| Vargem              | 13.732 | 26       | 266    | 1.528  | 46      | 378   | 12.238     | 0        |





Tabela 5.4 - Número de rebanhos extrapolados e ajustados para 2022.

| Município           |        |          |        | 2      | 022     |       |            |          |
|---------------------|--------|----------|--------|--------|---------|-------|------------|----------|
| Município -         | Bovino | Bubalino | Equino | Suíno  | Caprino | Ovino | Galináceos | Codornas |
| Abdon Batista       | 15.452 | 0        | 116    | 4.397  | 42      | 143   | 12.915     | 0        |
| Anita Garibaldi     | 19.106 | 2        | 759    | 1.452  | 88      | 839   | 11.621     | 342      |
| Bocaina do Sul      | 19.539 | 17       | 1.338  | 841    | 90      | 1.402 | 5.970      | 29       |
| Bom Retiro          | 25.083 | 3        | 1.114  | 861    | 113     | 6.336 | 1.101.134  | 79       |
| Brunópolis          | 12.210 | 0        | 302    | 5.905  | 0       | 354   | 10.035     | 4        |
| Campos Novos        | 47.070 | 16       | 945    | 96.327 | 175     | 4.620 | 1.308.825  | 0        |
| Celso Ramos         | 6.328  | 0        | 94     | 1.184  | 55      | 81    | 4.568      | 0        |
| Cerro Negro         | 7.367  | 0        | 321    | 1.301  | 43      | 363   | 3.508      | 17       |
| Correia Pinto       | 30.276 | 2        | 1.963  | 1.948  | 192     | 1.786 | 236.124    | 17       |
| Curitibanos         | 32.681 | 8        | 939    | 35.092 | 0       | 4.298 | 6.647      | 130      |
| Lages               | 43.364 | 76       | 3.507  | 983    | 29      | 4.900 | 50.867     | 245      |
| Otacílio Costa      | 17.822 | 4        | 598    | 3.310  | 31      | 1.411 | 7.105      | 27       |
| Palmeira            | 12.017 | 50       | 763    | 981    | 6       | 1.079 | 4.950      | 40       |
| Ponte Alta          | 15.630 | 0        | 566    | 826    | 0       | 1.193 | 203.524    | 101      |
| Rio Rufino          | 10.637 | 0        | 513    | 1.239  | 46      | 406   | 3.780      | 0        |
| São José do Cerrito | 53.041 | 11       | 1.534  | 4.350  | 261     | 3.252 | 28.548     | 67       |
| Urubici             | 30.138 | 215      | 1.320  | 471    | 117     | 789   | 6.120      | 13       |
| Vargem              | 13.564 | 28       | 266    | 1.571  | 36      | 374   | 12.786     | 0        |





Tabela 5.5 - Número de rebanhos extrapolados e ajustados para 2030.

| Município           |        |          |        | 2      | 030     |       |            |          |
|---------------------|--------|----------|--------|--------|---------|-------|------------|----------|
| Município -         | Bovino | Bubalino | Equino | Suíno  | Caprino | Ovino | Galináceos | Codornas |
| Abdon Batista       | 17.024 | 0        | 36     | 4.683  | 47      | 103   | 12.101     | 0        |
| Anita Garibaldi     | 21.989 | 0        | 1.060  | 1.516  | 102     | 951   | 2.242      | 542      |
| Bocaina do Sul      | 24.144 | 9        | 1.824  | 761    | 125     | 1.951 | 3.998      | 51       |
| Bom Retiro          | 25.667 | 5        | 1.153  | 291    | 84      | 8.092 | 1.046.754  | 164      |
| Brunópolis          | 11.436 | 0        | 277    | 5.879  | 0       | 0     | 12.413     | 6        |
| Campos Novos        | 52.288 | 0        | 735    | 84.677 | 0       | 3.341 | 949.979    | 0        |
| Celso Ramos         | 6.782  | 0        | 43     | 1.277  | 63      | 42    | 4.565      | 0        |
| Cerro Negro         | 7.290  | 0        | 439    | 1.606  | 42      | 284   | 1.075      | 30       |
| Correia Pinto       | 33.925 | 1        | 2.702  | 2.265  | 226     | 1.850 | 334.028    | 30       |
| Curitibanos         | 29.574 | 4        | 605    | 38.240 | 0       | 1.672 | 27.627     | 224      |
| Lages               | 42.614 | 71       | 4.259  | 550    | 15      | 4.575 | 54.402     | 230      |
| Otacílio Costa      | 20.467 | 9        | 911    | 4.712  | 12      | 2.166 | 10.635     | 48       |
| Palmeira            | 13.800 | 94       | 1.162  | 1.445  | 0       | 1.104 | 3.626      | 70       |
| Ponte Alta          | 14.859 | 0        | 760    | 772    | 117     | 1.105 | 381.354    | 178      |
| Rio Rufino          | 11.398 | 0        | 592    | 1.826  | 0       | 413   | 1.671      | 0        |
| São José do Cerrito | 64.578 | 6        | 1.439  | 3.778  | 219     | 3.227 | 19.562     | 118      |
| Urubici             | 33.013 | 304      | 1.625  | 161    | 153     | 743   | 11.098     | 24       |
| Vargem              | 12.222 | 50       | 263    | 1.910  | 0       | 343   | 17.166     | 0        |





Tabela 5.6 - Número de rebanhos extrapolados e ajustados para 2040.

| Municípia           |        |          |        | 2      | 040     |        |            |          |
|---------------------|--------|----------|--------|--------|---------|--------|------------|----------|
| Município -         | Bovino | Bubalino | Equino | Suíno  | Caprino | Ovino  | Galináceos | Codornas |
| Abdon Batista       | 18.990 | 0        | 0      | 5.041  | 54      | 53     | 11.083     | 0        |
| Anita Garibaldi     | 25.594 | 0        | 1.437  | 1.594  | 119     | 1.092  | 21.920     | 792      |
| Bocaina do Sul      | 29.902 | 0        | 2.432  | 661    | 169     | 2.636  | 1.533      | 79       |
| Bom Retiro          | 26.396 | 8        | 1.201  | 0      | 49      | 10.285 | 978.779    | 270      |
| Brunópolis          | 10.468 | 0        | 247    | 5.846  | 0       | 0      | 15.385     | 9        |
| Campos Novos        | 58.811 | 0        | 473    | 70.116 | 0       | 1.743  | 501.421    | 0        |
| Celso Ramos         | 7.349  | 0        | 0      | 1.393  | 73      | 0      | 4.561      | 0        |
| Cerro Negro         | 7.193  | 0        | 587    | 1.987  | 41      | 183    | 40.075     | 46       |
| Correia Pinto       | 38.487 | 0        | 3.626  | 2.662  | 268     | 1.930  | 456.408    | 46       |
| Curitibanos         | 25.690 | 0        | 188    | 42.175 | 0       | 0      | 32.454     | 342      |
| Lages               | 41.676 | 64       | 5.200  | 9      | 7       | 4.168  | 58.819     | 211      |
| Otacílio Costa      | 23.774 | 15       | 1.302  | 6.464  | 0       | 3.110  | 15.047     | 75       |
| Palmeira            | 16.029 | 149      | 1.661  | 2.025  | 0       | 1.135  | 1.970      | 108      |
| Ponte Alta          | 13.895 | 0        | 1.003  | 704    | 166     | 995    | 424.641    | 274      |
| Rio Rufino          | 12.349 | 0        | 691    | 2.561  | 0       | 422    | 11.622     | 0        |
| São José do Cerrito | 78.999 | 0        | 1.321  | 3.062  | 167     | 3.195  | 8.329      | 181      |
| Urubici             | 36.605 | 414      | 2.006  | 0      | 199     | 686    | 17.319     | 37       |
| Vargem              | 10.544 | 76       | 260    | 2.334  | 0       | 303    | 22.642     | 0        |





A metodologia utilizada para a determinação da demanda de água para criação animal foi a mesma descrita no item 4.3 (Criação Animal), baseada no efetivo dos rebanhos dos diferentes animais.

# 5.1.4 Irrigação

No campo da agricultura, especialmente se tratando de grandes produções voltadas, principalmente, para a exportação, o investimento em pesquisa e desenvolvimento de novas tecnologias que objetivam o aumento da produtividade e a redução de custos é bastante significativo. Diante disso, no cenário da irrigação, especialmente a longo prazo, é esperado o uso de equipamentos e técnicas mais eficientes, responsáveis pela diminuição nas perdas por condução, distribuição e aplicação de água.

Embora seja conhecida a tendência de melhoria na eficiência dos sistemas de irrigação, a quantificação desse aspecto em termos dos índices de captação e consumo de áqua. utilizados na estimativa das demandas hídricas, é bastante limitada. Prezando por evitar subestimativas, optou-se pela manutenção dos parâmetros para os cálculos referentes aos cenários propostos. Assim, os cenários estudados previram, restritamente, alterações de áreas irrigadas dentro dos municípios avaliados.

Para tanto, inicialmente, buscou-se realizar a extrapolação dos dados obtidos nos censos agropecuários de 2006 e 2017, advindos de IBGE (2006 e 2017), mediante aplicação das taxas de crescimento anual para cada cidade. Especialmente para os municípios em que havia área irrigada igual a zero (0) em 2006 e demonstraram surgimento de irrigação em 2017, tal metodologia se tornou inviável, tendo essa situação ocorrido nas cidades de Bocaina do Sul, Cerro Negro, Otacílio Costa e Palmeira. Além disso, para municípios que demonstraram crescimento muito expressivo, como o caso de Lages, ao realizar a extrapolação para cenários de médio e longo prazo, foram obtidos valores extremamente altos, não condizentes com a realidade.

Diante dessas ocorrências, optou-se por adotar critério regional, sendo aplicada, para todos os municípios, a taxa de crescimento média do estado de Santa Catarina para o período de 2006 a 2017, correspondendo a 2,08% ao ano, conforme Secretaria de Estado da Agricultura e Pesca (SANTA CATARINA, 2018).

Neste contexto, as áreas irrigadas estimadas são demonstradas na Tabela 5.7, sendo esses dados também ajustados conforme a porção do território municipal contido na área de estudo.





Tabela 5.7 - Áreas irrigadas extrapoladas e ajustadas para os anos de 2021, 2022, 2030 e 2040.

| Município           | 2021 (ha) | 2022 (ha) | 2030 (ha) | 2040 (ha) |
|---------------------|-----------|-----------|-----------|-----------|
| Abdon Batista       | 21,72     | 22,17     | 26,14     | 32,11     |
| Anita Garibaldi     | 7,98      | 8,15      | 9,61      | 24,08     |
| Bocaina do Sul      | 9,77      | 9,98      | 11,76     | 14,45     |
| Bom Retiro          | 136,98    | 139,83    | 164,86    | 232,81    |
| Brunópolis          | 148,76    | 151,85    | 179,04    | 219,97    |
| Campos Novos        | 171,50    | 175,06    | 206,41    | 340,39    |
| Celso Ramos         | 53,08     | 54,18     | 63,88     | 150,93    |
| Cerro Negro         | 2,32      | 2,37      | 2,79      | 8,03      |
| Correia Pinto       | 72,75     | 74,26     | 87,56     | 107,57    |
| Curitibanos         | 705,79    | 720,47    | 849,46    | 1043,63   |
| Lages               | 219,20    | 223,76    | 263,82    | 682,38    |
| Otacílio Costa      | 2,84      | 2,90      | 3,42      | 4,82      |
| Palmeira            | 7,60      | 7,76      | 9,15      | 11,24     |
| Ponte Alta          | 11,94     | 12,19     | 14,38     | 17,66     |
| Rio Rufino          | 38,00     | 38,79     | 45,74     | 56,20     |
| São José do Cerrito | 105,33    | 107,52    | 126,77    | 155,74    |
| Urubici             | 269,00    | 274,59    | 323,76    | 574,80    |
| Vargem              | 0,00      | 0,00      | 0,00      | 0,00      |

Finalmente, a metodologia utilizada para estimar as vazões de retirada, de retorno e de consumo para a irrigação foi a mesma descrita no item 4.4 (Irrigação).

### 5.1.5 Uso Industrial

Conforme já relatado, no que se refere ao uso industrial, a inconsistência e indisponibilidade de dados são fatores limitantes para a estimativa das demandas hídricas bem como para projeções para diferentes cenários. Assim sendo, a metodologia aqui adotada é análoga à utilizada no item 4.5 (Uso Industrial).

No que se refere ao consumo por operário bem como às taxas de consumo de água por classe, foram mantidos os valores aplicados anteriormente, sendo as adaptações para a projeção dos cenários limitadas ao crescimento ou decrescimento do número de empregados.

Ademais, a estimativa de cenários dos usos da água para a indústria foi realizada a partir dos dados de empregados por setor industrial dos anos de 2009 a 2019, divulgados por IBGE (2020). Para estes dados foi aplicada regressão linear, projetando-se, assim, o número de operários para os anos de 2021, 2022, 2030 e 2040.

Por se tratar de metodologia matemática, em alguns casos, na ocorrência de tendência de decréscimo, obtiveram-se números negativos de empregados. Especificamente para esses casos, realizou-se, novamente, a regressão linear considerando os dados a partir de 2014. Quando, ainda assim, obtiveram-se resultados negativos, considerou-se que o número de empregados da respectiva atividade seria nulo para o município.

De forma resumida, a Tabela 5.8 apresenta o total de empregados por municípios para os quatro (4) cenários estipulados.





Tabela 5.8 - Número de empregados extrapolados do setor industrial para os anos de 2021, 2022, 2030 e 2040.

| Município           | 2021  | 2022  | 2030  | 2040   |
|---------------------|-------|-------|-------|--------|
| Abdon Batista       | 43    | 46    | 72    | 108    |
| Anita Garibaldi     | 339   | 355   | 529   | 745    |
| Bocaina do Sul      | 64    | 66    | 92    | 128    |
| Bom Retiro          | 277   | 275   | 284   | 381    |
| Brunópolis          | 54    | 56    | 86    | 121    |
| Campos Novos        | 1.718 | 1.760 | 2.232 | 2.802  |
| Celso Ramos         | 60    | 61    | 78    | 99     |
| Cerro Negro         | 51    | 53    | 70    | 92     |
| Correia Pinto       | 729   | 757   | 1.051 | 1.427  |
| Curitibanos         | 2.033 | 2.047 | 2.279 | 2.840  |
| Lages               | 7.425 | 7.647 | 9.339 | 11.862 |
| Otacílio Costa      | 987   | 1.018 | 1.534 | 2.055  |
| Palmeira            | 264   | 274   | 357   | 468    |
| Ponte Alta          | 234   | 242   | 416   | 588    |
| Rio Rufino          | 109   | 112   | 144   | 183    |
| São José do Cerrito | 78    | 78    | 85    | 93     |
| Urubici             | 118   | 121   | 151   | 199    |
| Vargem              | 87    | 90    | 120   | 158    |

Por fim, a partir das extrapolações, foram estimadas as vazões de retirada, de retorno e de consumo para o uso industrial dos anos de 2021, 2022, 2030 e 2040.

### 5.1.6 Resultados

Na sequência, a Tabela 5.9 até Tabela 5.12 apresentam as vazões de captação, retorno e consumo para todos os usos da água analisados, considerando os quatro (4) cenários estabelecidos.





Tabela 5.9 - Demandas hídricas para o ano de 2021.

|                     |             |             |             |             |               |             |             |              | 2021        |             |              |             |             |             |             |             |             |             |
|---------------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Muncípio            |             | Total       |             | Abas        | stecimento Ur | bano        | Aba         | stecimento R | ural        | C           | riação Anima | al          |             | Irrigação   |             |             | Industrial  |             |
|                     | Qcap (m³/s) | Qret (m³/s) | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s)   | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s)  | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s)  | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s) | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s) | Qcon (m³/s) |
| Abdon Batista       | 0,0321      | 0,0162      | 0,0159      | 0,0092      | 0,0073        | 0,0018      | 0,0018      | 0,0009       | 0,0009      | 0,0096      | 0,0019       | 0,0077      | 0,0113      | 0,0059      | 0,0054      | 0,0002      | 0,0001      | 0,0001      |
| Anita Garibaldi     | 0,0280      | 0,0135      | 0,0145      | 0,0091      | 0,0073        | 0,0018      | 0,0017      | 0,0009       | 0,0009      | 0,0116      | 0,0023       | 0,0093      | 0,0042      | 0,0022      | 0,0020      | 0,0014      | 0,0008      | 0,0005      |
| Bocaina do Sul      | 0,0243      | 0,0101      | 0,0142      | 0,0047      | 0,0037        | 0,0009      | 0,0023      | 0,0011       | 0,0011      | 0,0120      | 0,0024       | 0,0096      | 0,0051      | 0,0026      | 0,0024      | 0,0002      | 0,0002      | 0,0001      |
| Bom Retiro          | 0,1107      | 0,0556      | 0,0551      | 0,0150      | 0,0120        | 0,0030      | 0,0022      | 0,0011       | 0,0011      | 0,0206      | 0,0041       | 0,0165      | 0,0712      | 0,0370      | 0,0342      | 0,0017      | 0,0014      | 0,0003      |
| Brunópolis          | 0,0906      | 0,0451      | 0,0455      | 0,0021      | 0,0017        | 0,0004      | 0,0022      | 0,0011       | 0,0011      | 0,0083      | 0,0017       | 0,0066      | 0,0774      | 0,0402      | 0,0371      | 0,0007      | 0,0004      | 0,0003      |
| Campos Novos        | 0,2264      | 0,1253      | 0,1011      | 0,0668      | 0,0534        | 0,0134      | 0,0036      | 0,0018       | 0,0018      | 0,0478      | 0,0096       | 0,0382      | 0,0892      | 0,0464      | 0,0428      | 0,0191      | 0,0141      | 0,0049      |
| Celso Ramos         | 0,0342      | 0,0170      | 0,0172      | 0,0015      | 0,0012        | 0,0003      | 0,0009      | 0,0005       | 0,0005      | 0,0039      | 0,0008       | 0,0031      | 0,0276      | 0,0144      | 0,0132      | 0,0003      | 0,0002      | 0,0001      |
| Cerro Negro         | 0,0092      | 0,0038      | 0,0054      | 0,0021      | 0,0017        | 0,0004      | 0,0010      | 0,0005       | 0,0005      | 0,0047      | 0,0009       | 0,0038      | 0,0012      | 0,0006      | 0,0006      | 0,0003      | 0,0001      | 0,0002      |
| Correia Pinto       | 0,0860      | 0,0453      | 0,0406      | 0,0222      | 0,0177        | 0,0044      | 0,0026      | 0,0013       | 0,0013      | 0,0198      | 0,0040       | 0,0158      | 0,0378      | 0,0197      | 0,0182      | 0,0036      | 0,0027      | 0,0009      |
| Curitibanos         | 0,4868      | 0,2694      | 0,2174      | 0,0705      | 0,0564        | 0,0141      | 0,0029      | 0,0014       | 0,0014      | 0,0253      | 0,0051       | 0,0202      | 0,3670      | 0,1908      | 0,1762      | 0,0211      | 0,0157      | 0,0054      |
| Lages               | 0,6497      | 0,4674      | 0,1823      | 0,4507      | 0,3606        | 0,0901      | 0,0010      | 0,0005       | 0,0005      | 0,0281      | 0,0056       | 0,0225      | 0,1140      | 0,0593      | 0,0547      | 0,0559      | 0,0415      | 0,0144      |
| Otacílio Costa      | 0,0556      | 0,0367      | 0,0188      | 0,0364      | 0,0291        | 0,0073      | 0,0010      | 0,0005       | 0,0005      | 0,0111      | 0,0022       | 0,0089      | 0,0015      | 0,0008      | 0,0007      | 0,0056      | 0,0041      | 0,0015      |
| Palmeira            | 0,0211      | 0,0094      | 0,0117      | 0,0022      | 0,0017        | 0,0004      | 0,0021      | 0,0010       | 0,0010      | 0,0074      | 0,0015       | 0,0059      | 0,0040      | 0,0021      | 0,0019      | 0,0055      | 0,0031      | 0,0024      |
| Ponte Alta          | 0,0260      | 0,0123      | 0,0137      | 0,0067      | 0,0054        | 0,0013      | 0,0013      | 0,0006       | 0,0006      | 0,0106      | 0,0021       | 0,0085      | 0,0062      | 0,0032      | 0,0030      | 0,0012      | 0,0009      | 0,0003      |
| Rio Rufino          | 0,0319      | 0,0154      | 0,0165      | 0,0029      | 0,0023        | 0,0006      | 0,0020      | 0,0010       | 0,0010      | 0,0066      | 0,0013       | 0,0053      | 0,0198      | 0,0103      | 0,0095      | 0,0005      | 0,0004      | 0,0001      |
| São José do Cerrito | 0,0986      | 0,0424      | 0,0562      | 0,0050      | 0,0040        | 0,0010      | 0,0065      | 0,0032       | 0,0032      | 0,0319      | 0,0064       | 0,0255      | 0,0548      | 0,0285      | 0,0263      | 0,0004      | 0,0004      | 0,0001      |
| Urubici             | 0,1778      | 0,0912      | 0,0865      | 0,0159      | 0,0128        | 0,0032      | 0,0026      | 0,0013       | 0,0013      | 0,0183      | 0,0037       | 0,0146      | 0,1399      | 0,0727      | 0,0671      | 0,0010      | 0,0008      | 0,0003      |
| Vargem              | 0,0125      | 0,0043      | 0,0081      | 0,0018      | 0,0014        | 0,0004      | 0,0017      | 0,0009       | 0,0009      | 0,0084      | 0,0017       | 0,0067      | 0,0000      | 0,0000      | 0,0000      | 0,0005      | 0,0003      | 0,0001      |
| Total               | 2,2015      | 1,2804      | 0,9210      | 0,7248      | 0,5798        | 0,1450      | 0,0394      | 0,0197       | 0,0197      | 0,2861      | 0,0572       | 0,2289      | 1,0320      | 0,5366      | 0,4953      | 0,1191      | 0,0870      | 0,0321      |

Nota: Qcap = vazão captada; Qret = vazão de retorno e Qcon = vazão consumida.

Tabela 5.10 - Demandas hídricas para o ano de 2022.

|                     |             |             |             |             |               |             |             |              | 2022        |             |               |             |             |             |             |             |             |             |
|---------------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|--------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Munaínia            |             | Total       |             | Abas        | stecimento Ur | bano        | Aba         | stecimento R | ural        | C           | Criação Anima | ıl          |             | Irrigação   |             |             | Industrial  |             |
| Muncípio            | Qcap (m³/s) | Qret (m³/s) | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s)   | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s)  | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s)   | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s) | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s) | Qcon (m³/s) |
| Abdon Batista       | 0,0327      | 0,0165      | 0,0161      | 0,0094      | 0,0076        | 0,0019      | 0,0018      | 0,0009       | 0,0009      | 0,0097      | 0,0019        | 0,0078      | 0,0115      | 0,0060      | 0,0055      | 0,0002      | 0,0002      | 0,0001      |
| Anita Garibaldi     | 0,0284      | 0,0137      | 0,0148      | 0,0093      | 0,0074        | 0,0019      | 0,0017      | 0,0008       | 0,0008      | 0,0119      | 0,0024        | 0,0095      | 0,0042      | 0,0022      | 0,0020      | 0,0014      | 0,0008      | 0,0006      |
| Bocaina do Sul      | 0,0251      | 0,0105      | 0,0146      | 0,0050      | 0,0040        | 0,0010      | 0,0023      | 0,0011       | 0,0011      | 0,0124      | 0,0025        | 0,0099      | 0,0052      | 0,0027      | 0,0025      | 0,0002      | 0,0002      | 0,0001      |
| Bom Retiro          | 0,1126      | 0,0567      | 0,0559      | 0,0153      | 0,0123        | 0,0031      | 0,0022      | 0,0011       | 0,0011      | 0,0206      | 0,0041        | 0,0165      | 0,0727      | 0,0378      | 0,0349      | 0,0017      | 0,0014      | 0,0004      |
| Brunópolis          | 0,0922      | 0,0459      | 0,0463      | 0,0021      | 0,0017        | 0,0004      | 0,0021      | 0,0011       | 0,0011      | 0,0082      | 0,0016        | 0,0065      | 0,0790      | 0,0411      | 0,0379      | 0,0008      | 0,0004      | 0,0003      |
| Campos Novos        | 0,2309      | 0,1284      | 0,1025      | 0,0684      | 0,0547        | 0,0137      | 0,0035      | 0,0017       | 0,0017      | 0,0477      | 0,0095        | 0,0382      | 0,0910      | 0,0473      | 0,0437      | 0,0202      | 0,0150      | 0,0052      |
| Celso Ramos         | 0,0348      | 0,0173      | 0,0175      | 0,0015      | 0,0012        | 0,0003      | 0,0009      | 0,0005       | 0,0005      | 0,0039      | 0,0008        | 0,0031      | 0,0282      | 0,0147      | 0,0135      | 0,0003      | 0,0002      | 0,0001      |
| Cerro Negro         | 0,0093      | 0,0039      | 0,0055      | 0,0022      | 0,0018        | 0,0004      | 0,0009      | 0,0005       | 0,0005      | 0,0047      | 0,0009        | 0,0038      | 0,0012      | 0,0006      | 0,0006      | 0,0003      | 0,0001      | 0,0002      |
| Correia Pinto       | 0,0870      | 0,0457      | 0,0413      | 0,0220      | 0,0176        | 0,0044      | 0,0025      | 0,0013       | 0,0013      | 0,0202      | 0,0040        | 0,0161      | 0,0386      | 0,0201      | 0,0185      | 0,0036      | 0,0027      | 0,0010      |
| Curitibanos         | 0,4956      | 0,2744      | 0,2212      | 0,0712      | 0,0570        | 0,0142      | 0,0028      | 0,0014       | 0,0014      | 0,0251      | 0,0050        | 0,0201      | 0,3746      | 0,1948      | 0,1798      | 0,0218      | 0,0162      | 0,0056      |
| Lages               | 0,6574      | 0,4729      | 0,1845      | 0,4536      | 0,3629        | 0,0907      | 0,0010      | 0,0005       | 0,0005      | 0,0281      | 0,0056        | 0,0225      | 0,1164      | 0,0605      | 0,0559      | 0,0584      | 0,0434      | 0,0150      |
| Otacílio Costa      | 0,0568      | 0,0375      | 0,0192      | 0,0372      | 0,0298        | 0,0074      | 0,0010      | 0,0005       | 0,0005      | 0,0113      | 0,0023        | 0,0091      | 0,0015      | 0,0008      | 0,0007      | 0,0057      | 0,0042      | 0,0015      |
| Palmeira            | 0,0217      | 0,0096      | 0,0121      | 0,0022      | 0,0018        | 0,0004      | 0,0021      | 0,0010       | 0,0010      | 0,0077      | 0,0015        | 0,0062      | 0,0040      | 0,0021      | 0,0019      | 0,0056      | 0,0032      | 0,0025      |
| Ponte Alta          | 0,0261      | 0,0124      | 0,0137      | 0,0068      | 0,0054        | 0,0014      | 0,0013      | 0,0006       | 0,0006      | 0,0105      | 0,0021        | 0,0084      | 0,0063      | 0,0033      | 0,0030      | 0,0013      | 0,0010      | 0,0003      |
| Rio Rufino          | 0,0325      | 0,0157      | 0,0168      | 0,0031      | 0,0024        | 0,0006      | 0,0020      | 0,0010       | 0,0010      | 0,0067      | 0,0013        | 0,0054      | 0,0202      | 0,0105      | 0,0097      | 0,0005      | 0,0004      | 0,0001      |
| São José do Cerrito | 0,1006      | 0,0432      | 0,0573      | 0,0050      | 0,0040        | 0,0010      | 0,0064      | 0,0032       | 0,0032      | 0,0327      | 0,0065        | 0,0262      | 0,0559      | 0,0291      | 0,0268      | 0,0005      | 0,0004      | 0,0001      |
| Urubici             | 0,1812      | 0,0930      | 0,0882      | 0,0162      | 0,0130        | 0,0032      | 0,0026      | 0,0013       | 0,0013      | 0,0185      | 0,0037        | 0,0148      | 0,1428      | 0,0743      | 0,0685      | 0,0010      | 0,0008      | 0,0003      |
| Vargem              | 0,0124      | 0,0044      | 0,0080      | 0,0019      | 0,0015        | 0,0004      | 0,0017      | 0,0008       | 0,0008      | 0,0083      | 0,0017        | 0,0067      | 0,000       | 0,0000      | 0,0000      | 0,0005      | 0,0004      | 0,0001      |
| Total               | 2,2372      | 1,3016      | 0,9356      | 0,7326      | 0,5860        | 0,1465      | 0,0388      | 0,0194       | 0,0194      | 0,2883      | 0,0577        | 0,2307      | 1,0534      | 0,5478      | 0,5056      | 0,1241      | 0,0908      | 0,0334      |

Nota: Qcap = vazão captada; Qret = vazão de retorno e Qcon = vazão consumida.





Tabela 5.11 - Demandas hídricas para o ano de 2030.

|                     |             |             |                          |             |                |             |             | :            | 2030        |             |              |             |             |             |             |             |             |             |
|---------------------|-------------|-------------|--------------------------|-------------|----------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Muncípio            |             | Total       |                          | Abas        | stecimento Url | bano        | Aba         | stecimento R | ural        | (           | riação Anima | al          |             | Irrigação   |             |             | Industrial  |             |
| withcipio           | Qcap (m³/s) | Qret (m³/s) | Qcon (m <sup>3</sup> /s) | Qcap (m³/s) | Qret (m³/s)    | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s)  | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s)  | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s) | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s) | Qcon (m³/s) |
| Abdon Batista       | 0,0379      | 0,0197      | 0,0182                   | 0,0119      | 0,0095         | 0,0024      | 0,0015      | 0,0007       | 0,0007      | 0,0106      | 0,0021       | 0,0085      | 0,0136      | 0,0071      | 0,0065      | 0,0003      | 0,0002      | 0,0001      |
| Anita Garibaldi     | 0,0337      | 0,0168      | 0,0169                   | 0,0104      | 0,0083         | 0,0021      | 0,0013      | 0,0007       | 0,0007      | 0,0137      | 0,0027       | 0,0110      | 0,0050      | 0,0026      | 0,0024      | 0,0033      | 0,0025      | 0,0009      |
| Bocaina do Sul      | 0,0332      | 0,0150      | 0,0182                   | 0,0094      | 0,0075         | 0,0019      | 0,0020      | 0,0010       | 0,0010      | 0,0154      | 0,0031       | 0,0123      | 0,0061      | 0,0032      | 0,0029      | 0,0003      | 0,0002      | 0,0001      |
| Bom Retiro          | 0,1294      | 0,0663      | 0,0630                   | 0,0186      | 0,0149         | 0,0037      | 0,0020      | 0,0010       | 0,0010      | 0,0209      | 0,0042       | 0,0167      | 0,0857      | 0,0446      | 0,0411      | 0,0021      | 0,0017      | 0,0004      |
| Brunópolis          | 0,1061      | 0,0533      | 0,0528                   | 0,0021      | 0,0016         | 0,0004      | 0,0019      | 0,0010       | 0,0010      | 0,0077      | 0,0015       | 0,0061      | 0,0931      | 0,0484      | 0,0447      | 0,0013      | 0,0008      | 0,0006      |
| Campos Novos        | 0,2710      | 0,1559      | 0,1151                   | 0,0831      | 0,0665         | 0,0166      | 0,0028      | 0,0014       | 0,0014      | 0,0473      | 0,0095       | 0,0378      | 0,1073      | 0,0558      | 0,0515      | 0,0305      | 0,0227      | 0,0077      |
| Celso Ramos         | 0,0401      | 0,0200      | 0,0201                   | 0,0016      | 0,0013         | 0,0003      | 0,0008      | 0,0004       | 0,0004      | 0,0042      | 0,0008       | 0,0033      | 0,0332      | 0,0173      | 0,0159      | 0,0003      | 0,0002      | 0,0001      |
| Cerro Negro         | 0,0104      | 0,0046      | 0,0058                   | 0,0031      | 0,0025         | 0,0006      | 0,0007      | 0,0004       | 0,0004      | 0,0047      | 0,0009       | 0,0038      | 0,0015      | 0,0008      | 0,0007      | 0,0004      | 0,0001      | 0,0004      |
| Correia Pinto       | 0,0963      | 0,0495      | 0,0468                   | 0,0209      | 0,0167         | 0,0042      | 0,0021      | 0,0011       | 0,0011      | 0,0232      | 0,0046       | 0,0185      | 0,0455      | 0,0237      | 0,0219      | 0,0046      | 0,0034      | 0,0012      |
| Curitibanos         | 0,5731      | 0,3184      | 0,2547                   | 0,0771      | 0,0617         | 0,0154      | 0,0025      | 0,0013       | 0,0013      | 0,0233      | 0,0047       | 0,0186      | 0,4417      | 0,2297      | 0,2120      | 0,0284      | 0,0210      | 0,0074      |
| Lages               | 0,7213      | 0,5176      | 0,2037                   | 0,4773      | 0,3819         | 0,0955      | 0,0008      | 0,0004       | 0,0004      | 0,0280      | 0,0056       | 0,0224      | 0,1372      | 0,0713      | 0,0658      | 0,0780      | 0,0584      | 0,0196      |
| Otacílio Costa      | 0,0673      | 0,0446      | 0,0227                   | 0,0440      | 0,0352         | 0,0088      | 0,0007      | 0,0004       | 0,0004      | 0,0134      | 0,0027       | 0,0107      | 0,0018      | 0,0009      | 0,0009      | 0,0075      | 0,0054      | 0,0020      |
| Palmeira            | 0,0259      | 0,0114      | 0,0145                   | 0,0027      | 0,0021         | 0,0005      | 0,0024      | 0,0012       | 0,0012      | 0,0091      | 0,0018       | 0,0073      | 0,0048      | 0,0025      | 0,0023      | 0,0070      | 0,0038      | 0,0032      |
| Ponte Alta          | 0,0289      | 0,0141      | 0,0148                   | 0,0072      | 0,0058         | 0,0014      | 0,0011      | 0,0006       | 0,0006      | 0,0109      | 0,0022       | 0,0087      | 0,0075      | 0,0039      | 0,0036      | 0,0022      | 0,0017      | 0,0005      |
| Rio Rufino          | 0,0381      | 0,0189      | 0,0193                   | 0,0043      | 0,0034         | 0,0009      | 0,0021      | 0,0010       | 0,0010      | 0,0073      | 0,0015       | 0,0058      | 0,0238      | 0,0124      | 0,0114      | 0,0007      | 0,0006      | 0,0001      |
| São José do Cerrito | 0,1172      | 0,0501      | 0,0671                   | 0,0058      | 0,0046         | 0,0012      | 0,0056      | 0,0028       | 0,0028      | 0,0392      | 0,0078       | 0,0314      | 0,0659      | 0,0343      | 0,0316      | 0,0007      | 0,0006      | 0,0001      |
| Urubici             | 0,2110      | 0,1086      | 0,1024                   | 0,0184      | 0,0147         | 0,0037      | 0,0024      | 0,0012       | 0,0012      | 0,0204      | 0,0041       | 0,0163      | 0,1684      | 0,0875      | 0,0808      | 0,0014      | 0,0010      | 0,0004      |
| Vargem              | 0,0121      | 0,0047      | 0,0075                   | 0,0026      | 0,0021         | 0,0005      | 0,0014      | 0,0007       | 0,0007      | 0,0076      | 0,0015       | 0,0061      | 0,0000      | 0,0000      | 0,0000      | 0,0005      | 0,0003      | 0,0001      |
| Total               | 2,5530      | 1,4893      | 1,0637                   | 0,8005      | 0,6404         | 0,1601      | 0,0342      | 0,0171       | 0,0171      | 0,3068      | 0,0614       | 0,2454      | 1,2420      | 0,6459      | 0,5962      | 0,1695      | 0,1245      | 0,0449      |

Nota: Qcap = vazão captada; Qret = vazão de retorno e Qcon = vazão consumida.

Tabela 5.12 - Demandas hídricas para o ano de 2040.

|                     |             |             |             |             |               |             |             | ,            | 2040        |             |               |             |             |             |             |             |             |             |
|---------------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|--------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Muncípio            |             | Total       |             | Aba         | stecimento Ur | bano        | Aba         | stecimento R | ural        | C           | Criação Anima | al          |             | Irrigação   |             |             | Industrial  |             |
| withcipio           | Qcap (m³/s) | Qret (m³/s) | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s)   | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s)  | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s)   | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s) | Qcon (m³/s) | Qcap (m³/s) | Qret (m³/s) | Qcon (m³/s) |
| Abdon Batista       | 0,0461      | 0,0247      | 0,0214      | 0,0160      | 0,0128        | 0,0032      | 0,0012      | 0,0006       | 0,0006      | 0,0118      | 0,0024        | 0,0094      | 0,0167      | 0,0087      | 0,0080      | 0,0004      | 0,0003      | 0,0001      |
| Anita Garibaldi     | 0,0403      | 0,0204      | 0,0199      | 0,0119      | 0,0096        | 0,0024      | 0,0010      | 0,0005       | 0,0005      | 0,0161      | 0,0032        | 0,0129      | 0,0061      | 0,0032      | 0,0029      | 0,0051      | 0,0039      | 0,0012      |
| Bocaina do Sul      | 0,0493      | 0,0253      | 0,0240      | 0,0205      | 0,0164        | 0,0041      | 0,0018      | 0,0009       | 0,0009      | 0,0191      | 0,0038        | 0,0153      | 0,0075      | 0,0039      | 0,0036      | 0,0004      | 0,0003      | 0,0001      |
| Bom Retiro          | 0,1550      | 0,0812      | 0,0738      | 0,0237      | 0,0190        | 0,0047      | 0,0018      | 0,0009       | 0,0009      | 0,0213      | 0,0043        | 0,0170      | 0,1053      | 0,0548      | 0,0506      | 0,0029      | 0,0023      | 0,0006      |
| Brunópolis          | 0,1272      | 0,0645      | 0,0627      | 0,0020      | 0,0016        | 0,0004      | 0,0017      | 0,0009       | 0,0009      | 0,0071      | 0,0014        | 0,0057      | 0,1144      | 0,0595      | 0,0549      | 0,0020      | 0,0012      | 0,0009      |
| Campos Novos        | 0,3300      | 0,1962      | 0,1338      | 0,1060      | 0,0848        | 0,0212      | 0,0021      | 0,0010       | 0,0010      | 0,0467      | 0,0093        | 0,0374      | 0,1319      | 0,0686      | 0,0633      | 0,0434      | 0,0325      | 0,0109      |
| Celso Ramos         | 0,0481      | 0,0241      | 0,0240      | 0,0018      | 0,0014        | 0,0004      | 0,0007      | 0,0003       | 0,0003      | 0,0045      | 0,0009        | 0,0036      | 0,0408      | 0,0212      | 0,0196      | 0,0003      | 0,0002      | 0,0001      |
| Cerro Negro         | 0,0126      | 0,0060      | 0,0066      | 0,0047      | 0,0038        | 0,0009      | 0,0005      | 0,0003       | 0,0003      | 0,0050      | 0,0010        | 0,0040      | 0,0018      | 0,0009      | 0,0009      | 0,0006      | 0,0001      | 0,0006      |
| Correia Pinto       | 0,1099      | 0,0553      | 0,0547      | 0,0196      | 0,0157        | 0,0039      | 0,0018      | 0,0009       | 0,0009      | 0,0269      | 0,0054        | 0,0215      | 0,0559      | 0,0291      | 0,0269      | 0,0057      | 0,0042      | 0,0015      |
| Curitibanos         | 0,6894      | 0,3831      | 0,3063      | 0,0852      | 0,0682        | 0,0170      | 0,0021      | 0,0011       | 0,0011      | 0,0212      | 0,0042        | 0,0170      | 0,5427      | 0,2822      | 0,2605      | 0,0381      | 0,0274      | 0,0107      |
| Lages               | 0,8108      | 0,5794      | 0,2314      | 0,5087      | 0,4070        | 0,1017      | 0,0005      | 0,0003       | 0,0003      | 0,0279      | 0,0056        | 0,0223      | 0,1685      | 0,0876      | 0,0809      | 0,1051      | 0,0790      | 0,0262      |
| Otacílio Costa      | 0,0822      | 0,0547      | 0,0275      | 0,0543      | 0,0434        | 0,0109      | 0,0005      | 0,0003       | 0,0003      | 0,0159      | 0,0032        | 0,0127      | 0,0022      | 0,0011      | 0,0010      | 0,0093      | 0,0067      | 0,0026      |
| Palmeira            | 0,0316      | 0,0140      | 0,0176      | 0,0033      | 0,0027        | 0,0007      | 0,0029      | 0,0015       | 0,0015      | 0,0108      | 0,0022        | 0,0086      | 0,0058      | 0,0030      | 0,0028      | 0,0087      | 0,0046      | 0,0041      |
| Ponte Alta          | 0,0318      | 0,0161      | 0,0157      | 0,0079      | 0,0063        | 0,0016      | 0,0009      | 0,0005       | 0,0005      | 0,0106      | 0,0021        | 0,0085      | 0,0092      | 0,0048      | 0,0044      | 0,0031      | 0,0024      | 0,0007      |
| Rio Rufino          | 0,0468      | 0,0238      | 0,0230      | 0,0065      | 0,0052        | 0,0013      | 0,0021      | 0,0010       | 0,0010      | 0,0080      | 0,0016        | 0,0064      | 0,0292      | 0,0152      | 0,0140      | 0,0009      | 0,0007      | 0,0002      |
| São José do Cerrito | 0,1408      | 0,0602      | 0,0807      | 0,0068      | 0,0055        | 0,0014      | 0,0047      | 0,0023       | 0,0023      | 0,0473      | 0,0095        | 0,0379      | 0,0810      | 0,0421      | 0,0389      | 0,0010      | 0,0008      | 0,0002      |
| Urubici             | 0,2554      | 0,1319      | 0,1234      | 0,0216      | 0,0173        | 0,0043      | 0,0022      | 0,0011       | 0,0011      | 0,0228      | 0,0046        | 0,0182      | 0,2068      | 0,1076      | 0,0993      | 0,0020      | 0,0014      | 0,0005      |
| Vargem              | 0,0123      | 0,0054      | 0,0069      | 0,0039      | 0,0031        | 0,0008      | 0,0011      | 0,0006       | 0,0006      | 0,0068      | 0,0014        | 0,0054      | 0,0000      | 0,0000      | 0,0000      | 0,0005      | 0,0003      | 0,0002      |
| Total               | 3,0195      | 1,7662      | 1,2533      | 0,9045      | 0,7236        | 0,1809      | 0,0296      | 0,0148       | 0,0148      | 0,3298      | 0,0660        | 0,2638      | 1,5259      | 0,7935      | 0,7325      | 0,2296      | 0,1683      | 0,0613      |

Nota: Qcap = vazão captada; Qret = vazão de retorno e Qcon = vazão consumida.





## 5.2 Usos Não Consuntivos

No que se refere aos usos não consuntivos, a definição das condições para cenários futuros se faz mais complicada, uma vez que não é possível sua quantificação. Diante disso, as análises aqui apresentadas são baseadas em informações secundárias a partir de estudos já existentes, bem como em observações realizadas em campo que viabilizaram suposições acerca das situações futuras.

# 5.2.1 Geração de Energia e Regularização de Vazões

Dentre os empreendimentos de aproveitamento hidrelétricos, destaca-se, em meados de 2022, a previsão de início das atividades da UHE São Roque, a qual contará com capacidade de geração de 135 MW. Além disso, para o cenário preditivo de 2030, espera-se que a PCH Canoas já esteja em operação, sendo estes empreendimentos, somados aos outros quatro (4) já existentes no rio Canoas, quais sejam: UHE Campos Novos, UHE Garibaldi, PCH Ado Popinhak e PCH Pery. A descrição detalhada da presente partição de queda é apresentada no item 3.2.1 (Geração de Energia e Regularização de Vazões).

No que se refere à regularização de vazões, para a UHE São Roque, é previsto que sua operação contemple tal função, juntando-se à PCH Pery e UHE Campos Novos que já exercem esta atividade.

### 5.2.2 Lançamento de Efluentes

No que se refere ao lançamento de efluentes, conforme já abordado no item 3.2.2 (Lançamento de Efluentes), há na área de estudo lançamentos de efluentes predominantemente domésticos (brutos) nos corpos d'água da região. Neste contexto, para fins de projeções para a atividade em tela, buscou-se avaliar as previsões em relação aos sistemas de esgotamento sanitário dos municípios em alvo.

De acordo com os PMSB (SDE, 2011a, 2011b, 2011c, 2011d, 2011e, 2011f, 2011g, 2011h, 2011i, 2011j), para os municípios de Anita Garibaldi; Bocaina do Sul; Bom Retiro; Brunópolis; Cerro Negro; Palmeira; Ponte Alta; Rio Rufino; São José do Cerrito e Urubici, estima-se que até 2031 ocorra a adequação dos sistemas de esgotamento sanitário, englobando atendimento a 100% da população rural e urbana.

Ainda conforme os PMSB (NOTUS, 2015a, 2015b), especialmente para o município de Correia Pinto foi previsto o desenvolvimento de estudo de concepção e projeto de esgotamento sanitário abrangendo toda a área urbana, considerando sua posterior implantação. Para Otacílio Costa, por sua vez, a previsão é de implementação do sistema de esgotamento sanitário conforme projeto já realizado pela Casan.

E importante destacar, ainda, o Marco Legal do Saneamento, estabelecido pela Lei 14.026, de 15 de julho de 2020 (BRASIL, 2020), o qual prevê a aprimoração das condições estruturais do saneamento básico no Brasil.

Tendo em vista a previsão de melhorias nos sistemas de esgotamento sanitário, é plausível admitir que, caso as metas descritas anteriormente sejam alcançadas, haverá atenuação no lançamento de efluentes sem tratamento na região.

## 5.2.3 Recreação, Lazer e Pesca

No que diz respeito à recreação e lazer, as investigações de campo e informações coletadas em URUBICI (2021) e CAMPOS NOVOS (2021) revelam elevado potencial da região em





relação ao turismo ecológico. Especificamente para Urubici, as trilhas, parques e cachoeiras encontradas são exemplos de atrativos, além de hotéis, pousadas, campings, sítios e casas para aluguel de temporada próximo ao rio Canoas. Já em Campos Novos, tem-se como destaque o Parque Estadual Rio Canoas, área correspondente à Unidade de Conservação de Proteção Integral, a qual apresenta trilhas, espaço para piqueniques e centro de visitantes.

Em relação à pesca, a Agência de Desenvolvimento do Turismo de Santa Catarina (SANTUR, 2021) evidencia, tradicionalmente, a realização da pesca esportiva da truta no rio Canoas, entre junho e agosto, nos municípios de Bocaina do Sul, Lages e Urubici. Ademais, a partir das observações de campo foram identificados barcos utilizados, provavelmente, para pesca.

Neste contexto e considerando as projeções de crescimento populacional na região de estudo. espera-se a intensificação das atividades de recreação, lazer e pesca aqui narradas.

## Navegação

Em virtude da falta de informações a respeito do transporte fluvial no PERH-SC (SDE, 2017) e nos demais planos municipais (SDE, 2011a, 2011b, 2011c, 2011d, 2011e, 2011f, 2011g, 2011h, 2011i, 2011j e NOTUS, 2015a, 2015b), a presente cenarização é pautada apenas nas observações de campo, as quais apontam que o rio Canoas é utilizado para o transporte de pessoas, veículos particulares, insumos e produtos agrícolas. Desse modo, adotou-se, com base na projeção de crescimento populacional na área de estudo, a tendência de intensificação das atividades de navegação, especialmente no rio Canoas.

# MODELAGEM DE PROPAGAÇÃO DE CHEIAS E QUALIDADE DA ÁGUA

Considerando os cenários já descritos para os anos de 2021, 2022, 2030 e 2040, aprofundouse na temática relativa à propagação de cheias e qualidade da água para as quais foram desenvolvidos modelos matemáticos específicos, cuja descrição completa é apresentada no estudo Modelagem Hidrodinâmica e de Qualidade da Água, desenvolvido por Prime (2021), disponível no Anexo 2.

Os estudos de modelagem foram baseados no software HEC-RAS (Hydrologic Engineering Center - River Analysis System) - versão 5.0.7, concebido pelo U.S. Army Corps of Engineers (2019).

Trata-se de um modelo aplicado à simulação de perfis de linha de água em rios e reservatórios, permitindo realizar modelagens unidimensionais em regimes de escoamento permanente e não permanente, transporte de sedimentos e fundo móvel e qualidade da água.

#### 6.1 Modelo de Propagação de Cheias

A modelagem hidrodinâmica foi feita para verificar a propagação das ondas de cheias de projeto associadas à vazão média de longo termo (Q<sub>MLT</sub>) e recorrências de 100 e 1.000 anos  $(Q_{100}, Q_{1.000})$ , ao longo de todo o percurso do rio Canoas.

Na formulação do modelo matemático, o sistema simulado foi representado pelo percurso do álveo natural do rio Canoas, desde próximo a sua cabeceira até sua foz no rio Uruguai, bem como pelas estruturas hidráulicas de seis (6) barramentos interpostos em seu curso, correspondentes às UHEs Campos Novos, Garibaldi e São Roque e às PCHs Ado Popinhak, Pery e Canoas (PRIME, 2021)





# Modelo de Qualidade da Água

O módulo de qualidade da água simula os processos de transformação e o transporte dos parâmetros físicos e bioquímicos, considerando a temperatura; constituintes conservativos e não conservativos; série do nitrogênio dissolvido (NO<sub>3</sub>-N, NO<sub>2</sub>-N, NH<sub>4</sub>-N e Org-N); fósforo dissolvido (PO<sub>4</sub>-P, Org-P); algas; CBOD e oxigênio dissolvido.

Para tanto, o modelo requer, como dados de entrada, parâmetros de natureza climática, temperatura da água, nutrientes fosfatados e nitrogenados e constituintes arbitrários.

No processo de simulação, considerou-se o escoamento permanente e buscou-se representatividade das condições hidrológicas média e de seca, para o qual valeram-se da Q<sub>MLT</sub> e 50% da Q<sub>98</sub>, caracterizadas por afluências aportadas na porção alta do rio Canoas. próximo a sua cabeceira, e afluências laterais distribuídas ao longo de todo o seu percurso até sua foz no Rio Uruguai (PRIME, 2021).

#### 6.3 Conclusão

Em relação ao modelo hidrodinâmico, a presença da PCH Canoas, considerada para os cenários de 2030 e 2040, produzirá interferências mínimas nos valores de vazões e de níveis d'água a jusante do eixo de barramento.

Este fato decorre do pequeno volume de acumulação do reservatório do aproveitamento que apresenta, no N<sub>máximo normal de operação</sub> de 780,0 m, volume de apenas 12,29 hm<sup>3</sup>, o que, para a Q<sub>MLT</sub> de 147,12 m<sup>3</sup>/s, denota o tempo de residência de, aproximadamente, um (1) dia. Portanto, mesmo com a implantação do reservatório, o trecho em questão manterá regime de escoamento semelhante ao de ambiente lótico.

Especificamente para o aspecto da qualidade da água, os resultados da amostragem e das simulações assinalaram padrões satisfatórios em praticamente todo o curso d'água, conforme preconizado pela Resolução CONAMA 357/05 (BRASIL, 2005) para enquadramento de rios em classe 2, na qual se enquadra o rio Canoas.

Assim sendo, com base nos resultados, a inclusão da PCH Canoas não deverá causar modificações sensíveis quanto ao regime sazonal de vazões ou alterações na qualidade da água.

### **DISPONIBILIDADE HÍDRICA** 7

As disponibilidades hídricas representam as parcelas dos recursos de água que podem ser aplicadas nas diversas utilizações das atividades de consumo, geralmente associadas aos indicadores de valores mínimos, sendo necessários alguns esclarecimentos a respeito dos conceitos a elas relacionados.

Define-se potencialidade hídrica ou disponibilidade hídrica potencial como sendo a vazão natural média de um rio, medida em sua foz ou embocadura, ou em um ponto qualquer de seu curso controlado por postos ou estações hidrométricas. Seu conhecimento permite avaliar o limite do uso da água de um manancial não regularizado.

A vazão natural média não pode ser considerada como único parâmetro para representar a disponibilidade hídrica, uma vez que a descarga dos rios depende da sazonalidade e da variabilidade climática. Portanto, os períodos críticos, em termos de disponibilidade hídrica, devem ser avaliados, a fim de garantir segurança às atividades de planejamento e gestão (ANA, 2007).





A disponibilidade hídrica extrema, por sua vez, caracteriza o período crítico, sendo representada pelas vazões de estiagem ou vazões mínimas, podendo ser analisada a partir da frequência de ocorrência de vazões em uma seção do rio da bacia hidrográfica. Em especial, o estudo de vazões mínimas é fundamental em uma análise de disponibilidade hídrica, já que, no período de sua ocorrência, a disponibilidade é considerada crítica para atender todas as demandas, principalmente em cursos d'água onde não há reservatórios de regularização ou acumulação. Assim, considerando a variabilidade dos estoques de água na natureza, ora com ocorrências em excesso, ora em regimes de escassez, o confronto com as demandas deve ser feito para as condições de eventos extremos mínimos, como forma de assegurar o atendimento pleno no restante do tempo.

De forma geral, a disponibilidade hídrica superficial do presente estudo foi associada às vazões características definidas a partir das curvas de permanência descritas a seguir.

Para a definição das vazões características, inicialmente, avaliou-se o estudo fluviométrico do Projeto Básico da PCH Canoas, elaborado por Estelar (2018), o qual apresenta as séries de vazões mensais consistidas para cinco (5) estações localizadas no rio Canoas, listadas na Tabela 7.1.

Tabela 7.1 - Estações fluviométricas analisadas no Projeto Básico da PCH Canoas.

| Código   | Nome              | Município           | Latitude | Longitude | Disponibilidade de<br>dados consistidos | A.D. (km²) | Operador |
|----------|-------------------|---------------------|----------|-----------|-----------------------------------------|------------|----------|
| 71200000 | Vila Canoas       | Bocaina do Sul      | -27,8028 | -49,7786  | 06/1957 - 02/2018                       | 1.010      | CPRM     |
| 71300000 | Rio Bonito        | Bocaina do Sul      | -27,7022 | -49,8400  | 03/1942 - 01/2018                       | 2.000      | CPRM     |
| 71350000 | Encruzilhada      | Otacílio Costa      | -27,5003 | -50,1331  | 10/1951 - 12/1985                       | 3.230      | ANA      |
| 71350001 | Encruzilhada II   | Otacílio Costa      | -27,5078 | -50,1128  | 07/1984 - 02/2018                       | 3.230      | CPRM     |
| 71383000 | Ponte Alta do Sul | Ponte Alta          | -27,4858 | 50,3917   | 03/1942 - 02/2018                       | 4.610      | CPRM     |
| 71550000 | Passo Caru        | São José do Cerrito | -27,5381 | -50,8600  | 01/1951 - 01/2013                       | 10.000     | ANA      |

Fonte: elaborado a partir de Estelar (2018).

Nota: A.D. = área de drenagem.

Para a seleção das estações fluviométricas de base, ou seja, aquelas para as quais foram estimadas as vazões de referências, seguiram-se os seguintes critérios:

- localização ao longo do rio Canoas de maneira a representar o comportamento dos trechos Alto, Médio e Baixo;
- influência dos aproveitamentos hidrelétricos já existentes no curso d'água; e.
- disponibilidade de dados, priorizando séries longas, com períodos em comum e dados recentes.

Diante do exposto, foi definido o período de janeiro de 1958 a fevereiro de 2018, sendo selecionadas as estações Vila Canoas (71200000), Ponte Alta do Sul (71383000) e Passo Caru (71550000). Para esta última, foi necessário fazer a extensão da série até o ano de 2018. valendo-se, para tanto, da correlação entre áreas de drenagem e da estação de apoio Ponte Alta do Sul (71383000).

Na sequência o Mapa 2 apresenta a localização das estações avaliadas e selecionadas enquanto a Tabela 7.2 até Tabela 7.4 demonstram as séries fluviométricas mensais utilizadas.

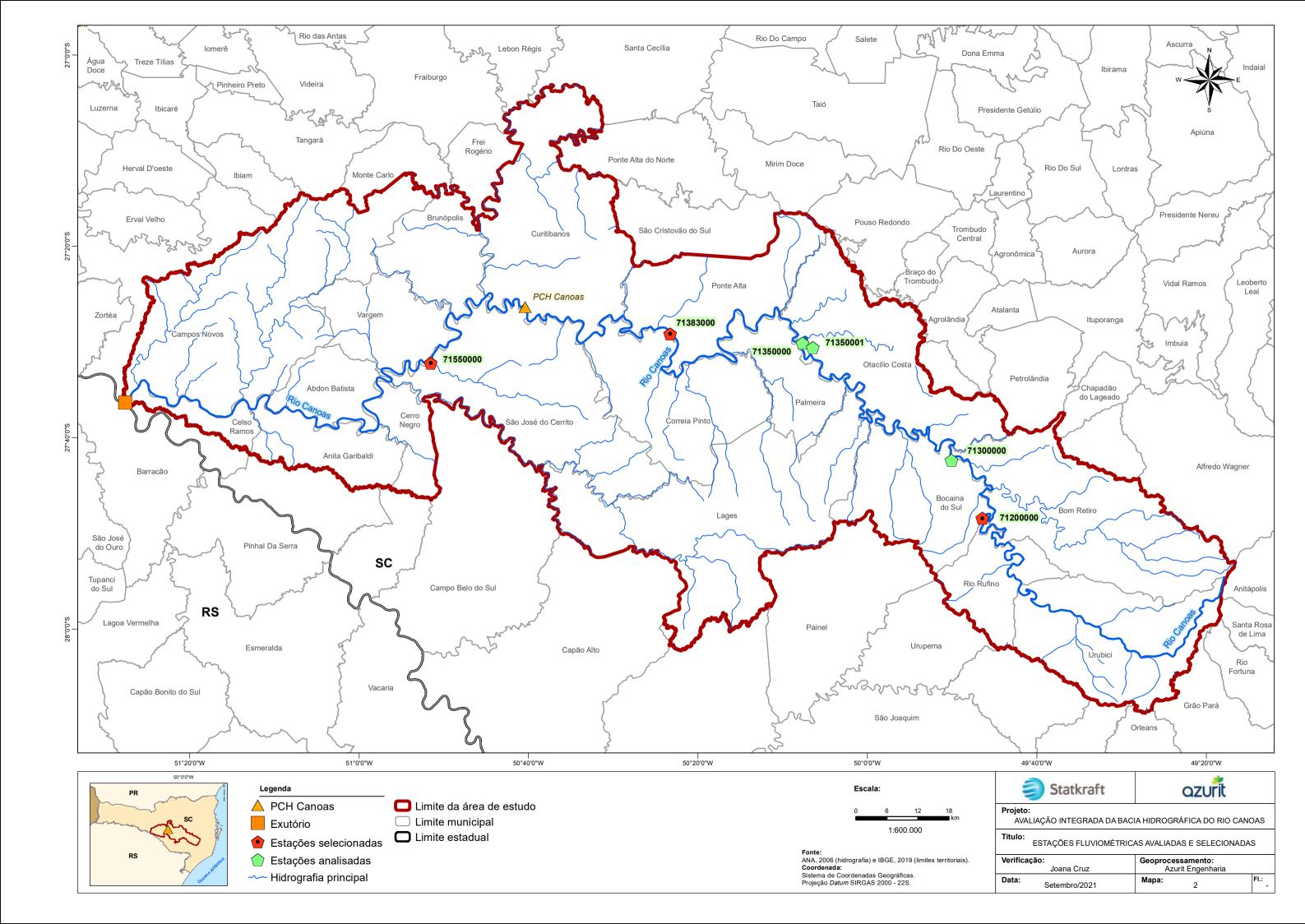







Tabela 7.2 - Vazões médias mensais da Estação Vila Canoas (71200000) em m³/s.

| Vila Canoas (71200000) |                |                |                |                |                |                |                |                |                |                |                |                |
|------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Ano/Mês                | Jan            | Fev            | Mar            | Abr            | Mai            | Jun            | Jul            | Ago            | Set            | Out            | Nov            | Dez            |
| 1958                   | 18,14          | 15,84          | 53,86          | 18,12          | 11,55          | 38,81          | 11,97          | 36,46          | 52,25          | 41,40          | 81,08          | 33,53          |
| 1959                   | 18,48          | 25,96          | 13,39          | 25,87          | 22,62          | 10,23          | 9,76           | 16,77          | 57,58          | 30,36          | 7,55           | 9,49           |
| 1960                   | 15,61          | 36,31          | 37,24          | 25,75          | 12,62          | 15,82          | 7,95           | 52,92          | 36,01          | 31,48          | 35,00          | 14,77          |
| 1961                   | 16,04          | 39,77          | 66,89          | 22,01          | 13,37          | 15,09          | 18,61          | 7,38           | 63,01          | 90,02          | 94,57          | 29,50          |
| 1962                   | 16,78          | 11,99          | 15,29          | 7,73           | 14,49          | 13,80          | 35,57          | 13,39          | 40,21          | 15,66          | 17,91          | 13,67          |
| 1963                   | 31,83          | 91,26          | 67,43          | 18,77          | 9,47           | 5,33<br>10,50  | 8,09           | 33,09          | 42,90          | 96,53          | 55,51          | 21,52          |
| 1964<br>1965           | 9,67<br>14,00  | 20,67<br>9,83  | 17,33<br>10,73 | 18,01<br>10,89 | 14,51<br>27,14 | 8,50           | 12,68          | 14,90<br>94,91 | 28,70<br>78,73 | 35,01<br>18,96 | 12,54          | 12,09<br>42,56 |
| 1966                   | 32,21          | 138,66         | 27,07          | 32,45          | 12,14          | 17,29          | 29,36<br>11,72 | 12,17          | 46,84          | 27,23          | 22,17<br>16,13 | 28,67          |
| 1967                   | 17,21          | 40,09          | 19,17          | 10,96          | 8,45           | 15,19          | 14,80          | 29,43          | 86,25          | 34,28          | 25,05          | 19,78          |
| 1968                   | 5,23           | 4,37           | 3,50           | 3,47           | 1,24           | 2,26           | 7,29           | 1,32           | 28,66          | 15,63          | 31,56          | 43,12          |
| 1969                   | 28,85          | 28,86          | 28,40          | 31,82          | 7,81           | 22,37          | 19,30          | 10,63          | 13,70          | 10,20          | 27,10          | 8,07           |
| 1970                   | 25,99          | 17,54          | 17,54          | 10,23          | 19,47          | 25,62          | 33,41          | 23,97          | 21,87          | 21,86          | 8,72           | 17,17          |
| 1971                   | 42,35          | 40,99          | 74,03          | 39,04          | 34,33          | 26,55          | 34,12          | 34,50          | 20,50          | 20,25          | 5,69           | 4,79           |
| 1972                   | 7,58           | 52,37          | 19,73          | 15,91          | 8,63           | 22,54          | 30,52          | 58,02          | 65,04          | 35,44          | 28,63          | 46,74          |
| 1973                   | 41,03          | 32,86          | 20,16          | 14,55          | 35,87          | 37,55          | 36,49          | 57,19          | 45,35          | 18,38          | 25,72          | 14,33          |
| 1974                   | 25,47          | 37,21          | 81,20          | 15,16          | 10,40          | 22,91          | 17,60          | 8,91           | 13,48          | 12,00          | 23,98          | 11,73          |
| 1975                   | 15,33          | 17,23          | 17,43          | 10,98          | 11,58          | 15,81          | 11,10          | 33,64          | 68,50          | 55,73          | 22,90          | 53,29          |
| 1976                   | 47,11          | 12,50          | 28,56          | 9,68           | 48,13          | 31,97          | 19,82          | 54,16          | 22,32          | 12,54          | 17,95          | 75,23          |
| 1977                   | 53,21          | 55,96          | 22,69          | 20,58          | 9,29           | 8,16           | 19,02          | 75,43          | 22,82          | 35,62          | 34,25          | 22,18          |
| 1978                   | 29,13          | 24,31          | 18,80          | 6,59           | 6,71           | 4,46           | 8,46           | 7,12           | 24,14          | 11,56          | 15,26          | 25,98          |
| 1979                   | 12,00          | 10,31          | 16,76          | 19,81          | 25,35          | 13,39          | 17,46          | 17,75          | 13,93          | 63,35          | 44,17          | 26,66          |
| 1980                   | 19,53          | 29,03          | 56,24          | 20,07          | 19,95          | 13,40          | 30,77          | 91,17          | 39,38          | 40,61          | 24,44          | 113,07         |
| 1981                   | 47,39          | 39,10          | 19,46          | 22,09          | 14,26          | 16,23          | 20,84          | 12,34          | 20,53          | 24,24          | 14,00          | 16,70          |
| 1982                   | 15,54          | 26,45          | 25,04          | 12,05          | 10,11          | 28,50          | 29,72          | 17,03          | 12,04          | 43,00          | 80,68          | 29,79          |
| 1983                   | 41,29          | 45,64          | 41,96          | 35,20          | 90,09          | 85,85          | 183,46         | 127,07         | 42,28          | 20,89          | 32,98          | 34,02          |
| 1984<br>1985           | 38,41<br>18,34 | 34,40<br>45,84 | 30,06<br>36,06 | 25,19<br>24,95 | 17,75<br>13,52 | 42,88<br>13,11 | 57,69          | 120,26         | 32,94          | 24,71<br>24,13 | 31,44<br>27,52 | 40,98<br>6,74  |
| 1986                   | 13,95          | 17,91          | 9,02           | 12,78          | 10,81          | 17,20          | 14,60<br>13,78 | 9,98<br>12,61  | 14,72<br>21,41 | 40,70          | 45,84          | 25,10          |
| 1987                   | 50,71          | 44,78          | 11,60          | 32,03          | 93,90          | 30,37          | 26,69          | 38,86          | 27,28          | 62,19          | 18,60          | 16,98          |
| 1988                   | 16,04          | 20,60          | 19,08          | 17,17          | 48,87          | 25,16          | 13,78          | 6,99           | 39,74          | 19,25          | 9,03           | 9,01           |
| 1989                   | 34,36          | 35,33          | 17,95          | 21,43          | 40,48          | 13,92          | 18,97          | 25,83          | 115,67         | 30,41          | 19,72          | 22,65          |
| 1990                   | 72,02          | 65,09          | 35,38          | 45,39          | 33,61          | 116,04         | 44,00          | 33,59          | 68,11          | 96,02          | 57,70          | 29,54          |
| 1991                   | 17,53          | 23,64          | 12,19          | 8,09           | 7,83           | 25,78          | 24,25          | 37,03          | 10,68          | 40,61          | 52,36          | 41,58          |
| 1992                   | 31,32          | 42,64          | 27,60          | 21,81          | 49,29          | 91,39          | 83,62          | 57,42          | 42,90          | 24,61          | 23,97          | 22,07          |
| 1993                   | 31,79          | 60,87          | 43,44          | 29,84          | 29,16          | 28,09          | 88,84          | 23,18          | 50,42          | 105,71         | 33,50          | 62,07          |
| 1994                   | 21,33          | 79,43          | 85,69          | 35,56          | 89,39          | 87,83          | 73,66          | 29,15          | 15,56          | 36,22          | 40,54          | 22,10          |
| 1995                   | 112,02         | 41,30          | 24,03          | 14,08          | 6,85           | 17,73          | 32,77          | 25,39          | 26,17          | 38,66          | 18,84          | 23,20          |
| 1996                   | 65,69          | 40,99          | 35,74          | 21,43          | 9,86           | 24,32          | 43,96          | 34,09          | 60,08          | 38,81          | 17,86          | 24,57          |
| 1997                   | 68,57          | 118,27         | 30,79          | 10,11          | 8,57           | 16,11          | 41,17          | 38,81          | 29,47          | 95,62          | 106,09         | 29,60          |
| 1998                   | 34,52          | 107,28         | 55,23          | 51,71          | 70,74          | 24,88          | 32,87          | 81,93          | 88,93          | 45,43          | 20,69          | 21,45          |
| 1999                   | 23,82          | 28,39          | 21,47          | 37,27          | 14,04          | 26,80          | 53,42          | 16,45          | 12,14          | 40,79          | 33,05          | 22,56          |
| 2000                   | 33,05          | 40,87          | 35,33          | 24,51          | 19,21          | 17,97          | 34,62          | 14,85          | 108,04         | 80,67          | 19,85          | 30,77          |
| 2001                   | 58,11          | 90,38          | 53,17          | 38,33<br>25,90 | 50,13          | 32,45          | 43,87          | 20,78          | 39,80          | 94,88          | 23,20          | 39,53          |
| 2002                   | 51,32<br>23,31 | 21,58<br>34,67 | 20,80<br>26,77 | 14,08          | 19,06<br>18,31 | 39,38<br>23,81 | 27,96<br>13,98 | 50,32<br>7,02  | 34,09<br>12,06 | 48,83<br>29,70 | 66,64<br>24,78 | 46,92<br>77,50 |
| 2003                   | 35,39          | 26,46          | 17,84          | 32,04          | 29,13          | 18,52          | 29,66          | 11,20          | 44,56          | 30,33          | 26,38          | 36,76          |
| 2005                   | 34,55          | 19,06          | 20,90          | 25,46          | 76,29          | 40,54          | 42,77          | 32,85          | 155,57         | 105,94         | 37,94          | 16,27          |
| 2006                   | 34,57          | 21,79          | 9,86           | 5,80           | 6,13           | 7,76           | 13,95          | 31,23          | 13,68          | 15,85          | 38,98          | 27,03          |
| 2007                   | 20,11          | 27,30          | 53,61          | 18,34          | 51,15          | 13,49          | 34,92          | 27,28          | 26,47          | 31,45          | 27,03          | 13,14          |
| 2008                   | 27,77          | 31,64          | 34,45          | 24,09          | 40,44          | 21,35          | 13,49          | 18,64          | 33,91          | 60,65          | 73,29          | 21,98          |
| 2009                   | 28,55          | 19,48          | 29,44          | 14,55          | 11,00          | 10,73          | 38,33          | 48,11          | 82,71          | 62,93          | 32,80          | 21,68          |
| 2010                   | 74,57          | 85,95          | 27,47          | 37,69          | 81,12          | 27,30          | 36,20          | 29,62          | 18,76          | 23,85          | 24,95          | 38,40          |
| 2011                   | 75,12          | 99,01          | 31,30          | 20,14          | 21,76          | 19,40          | 56,07          | 87,12          | 105,91         | 23,16          | 18,83          | 22,45          |
| 2012                   | 59,73          | 54,74          | 16,62          | 10,90          | 8,92           | 41,46          | 24,71          | 20,02          | 16,14          | 29,78          | 11,21          | 12,06          |
| 2013                   | 16,88          | 25,91          | 51,44          | 18,96          | 8,58           | 28,34          | 24,44          | 92,47          | 90,07          | 32,05          | 15,90          | 20,77          |
| 2014                   | 44,57          | 20,77          | 24,86          | 33,75          | 38,59          | 70,16          | 59,78          | 18,19          | 25,77          | 55,43          | 26,12          | 26,30          |
| 2015                   | 69,51          | 49,43          | 26,82          | 22,62          | 29,02          | 43,06          | 114,74         | 21,12          | 105,49         | 208,02         | 56,38          | 26,34          |
| 2016                   | 27,56          | 69,89          | 57,93          | 45,91          | 31,00          | 14,76          | 25,71          | 19,70          | 19,98          | 59,69          | 16,32          | 42,68          |
| 2017                   | 65,18          | 32,45          | 19,31          | 22,48          | 49,72          | 168,94         | 10,94          | 15,95          | 6,36           | 14,41          | 13,11          | 28,29          |
| 2018                   | 83,62          | 17,10          | -              | -              | -              | -              | -              | -              | -              | -              | -              | -              |

Fonte: Estelar (2018).





Tabela 7.3 - Vazões médias mensais da Estação Ponte Alta do Sul (71383000) em m³/s.

|              |                |                 |                 |                 | Ponte Al        | lta do Sul (7   | 1383000)         |                 |                  |                  |                  |                  |
|--------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|------------------|------------------|------------------|------------------|
| Ano/Mês      | Jan            | Fev             | Mar             | Abr             | Mai             | Jun             | Jul              | Ago             | Set              | Out              | Nov              | Dez              |
| 1958         | 68,93          | 52,80           | 188,27          | 64,24           | 34,76           | 122,44          | 46,59            | 138,61          | 219,68           | 188,69           | 214,12           | 120,27           |
| 1959         | 54,67          | 103,24          | 54,23           | 71,10           | 104,80          | 44,40           | 47,86            | 56,09           | 176,27           | 110,71           | 30,15            | 34,82            |
| 1960         | 37,47          | 77,01           | 87,00           | 60,56           | 39,27           | 51,23           | 31,18            | 163,81          | 128,35           | 122,57           | 164,49           | 68,79            |
| 1961         | 72,07          | 86,73           | 237,70          | 101,21          | 51,94           | 38,91           | 67,05            | 27,68           | 257,31           | 346,64           | 380,24           | 141,11           |
| 1962         | 65,59          | 61,39<br>306,33 | 68,07           | 32,69           | 103,29          | 76,93           | 118,61           | 59,10           | 166,90           | 88,07            | 75,36<br>216,92  | 49,54            |
| 1963<br>1964 | 98,97<br>33,79 | 54,05           | 218,07          | 110,38<br>60,05 | 41,00           | 21,33<br>38,91  | 27,68<br>51,51   | 81,10           | 128,80<br>124,84 | 433,43           | 73,22            | 70,29<br>35,18   |
| 1965         | 32,88          | 24,95           | 53,53<br>33,54  | 39,40           | 76,71<br>140,06 | 47,35           | 126,58           | 84,40<br>297,57 | 423,29           | 156,21<br>164,91 | 84,68            | 166,34           |
| 1966         | 183,60         | 347,28          | 219,46          | 105,51          | 62,32           | 103,58          | 81,25            | 86,34           | 211,34           | 109,82           | 84,77            | 113,93           |
| 1967         | 84,42          | 117,60          | 102,12          | 51,04           | 42,13           | 74,10           | 65,32            | 113,20          | 289,78           | 172,02           | 93,54            | 97,77            |
| 1968         | 30,21          | 23,89           | 19,67           | 21,20           | 15,59           | 16,61           | 34,51            | 15,44           | 82,99            | 46,60            | 146,10           | 102,70           |
| 1969         | 157,03         | 199,22          | 100,72          | 154,36          | 39,57           | 100,75          | 99,01            | 43,12           | 80,36            | 45,86            | 141,27           | 43,10            |
| 1970         | 89,57          | 68,38           | 66,92           | 52,62           | 91,72           | 152,10          | 161,06           | 96,42           | 119,03           | 106,86           | 43,04            | 65,10            |
| 1971         | 218,64         | 184,69          | 264,94          | 221,64          | 165,44          | 190,71          | 171,33           | 146,44          | 116,95           | 122,71           | 29,75            | 23,25            |
| 1972         | 34,50          | 150,74          | 79,89           | 59,75           | 23,19           | 89,23           | 120,03           | 243,17          | 332,10           | 156,22           | 104,95           | 105,94           |
| 1973         | 93,66          | 127,56          | 62,23           | 35,91           | 110,74          | 156,04          | 183,98           | 223,56          | 252,83           | 72,32            | 70,44            | 46,68            |
| 1974         | 88,31          | 94,48           | 137,58          | 75,77           | 32,04           | 89,40           | 73,03            | 41,98           | 94,90            | 42,02            | 68,44            | 50,46            |
| 1975         | 69,16          | 61,12           | 78,45           | 41,46           | 37,92           | 66,50           | 44,53            | 153,80          | 288,71           | 255,80           | 71,03            | 225,01           |
| 1976         | 138,74         | 50,40           | 129,73          | 41,62           | 109,33          | 175,44          | 82,50            | 225,36          | 96,93            | 58,03            | 69,60            | 271,12           |
| 1977         | 157,53         | 227,62          | 93,10           | 84,54           | 31,03           | 31,56           | 56,56            | 258,76          | 138,91           | 186,91           | 172,31           | 93,72            |
| 1978         | 75,50          | 74,28           | 60,83           | 21,00           | 15,78           | 16,55           | 34,33            | 30,32           | 93,07            | 51,61            | 89,32            | 49,56            |
| 1979         | 40,95          | 19,53           | 34,01           | 43,45           | 105,74          | 51,69           | 65,74            | 61,19           | 48,81            | 269,83           | 198,39           | 126,96           |
| 1980         | 67,36          | 54,03           | 207,67          | 75,90           | 76,59           | 38,26           | 109,10           | 326,26          | 250,20           | 136,58           | 128,12           | 266,72           |
| 1981         | 218,57         | 135,90          | 47,05           | 48,58           | 31,36           | 39,38           | 55,30            | 37,89           | 79,31            | 74,33            | 63,63            | 53,34            |
| 1982         | 42,58          | 104,31          | 77,24           | 36,54           | 26,20           | 74,92           | 154,89           | 85,41           | 47,06            | 191,62           | 347,62           | 121,03           |
| 1983         | 151,13         | 149,13          | 204,58          | 131,54          | 343,56          | 326,19          | 964,83           | 435,35          | 169,64           | 119,79           | 120,56           | 157,86           |
| 1984         | 107,11         | 99,85<br>164,66 | 101,75          | 76,19           | 77,73           | 246,37          | 276,86           | 661,61          | 120,31           | 178,51           | 117,00           | 147,63           |
| 1985         | 70,29<br>33,07 | 43,17           | 104,72<br>23,67 | 81,05           | 52,74           | 35,02           | 45,86            | 30,91<br>42,01  | 52,78<br>85,87   | 72,18<br>127,82  | 82,72            | 21,01<br>115,08  |
| 1986<br>1987 | 194,64         | 158,62          | 46,60           | 34,21<br>93,12  | 21,24<br>327,59 | 60,62<br>155,83 | 33,93<br>124,19  | 145,53          | 94,74            | 268,67           | 188,31<br>71,80  | 50,16            |
| 1988         | 53,80          | 68,02           | 62,11           | 76,37           | 210,28          | 131,92          | 60,36            | 24,65           | 113,97           | 81,67            | 37,72            | 32,13            |
| 1989         | 116,64         | 176,91          | 70,33           | 82,29           | 194,39          | 34,63           | 40,79            | 66,39           | 332,01           | 119,06           | 36,84            | 33,30            |
| 1990         | 247,04         | 155,96          | 117,54          | 164,35          | 102,20          | 404,68          | 172,09           | 133,65          | 246,09           | 347,90           | 304,82           | 94,14            |
| 1991         | 63,43          | 65,61           | 31,55           | 21,46           | 20,36           | 90,33           | 62,66            | 106,33          | 31,60            | 146,02           | 135,85           | 122,19           |
| 1992         | 83,82          | 148,00          | 91,67           | 51,71           | 127,69          | 326,08          | 319,11           | 296,46          | 162,80           | 82,63            | 83,14            | 46,57            |
| 1993         | 70,30          | 168,35          | 164,52          | 86,43           | 86,00           | 90,71           | 334,89           | 60,41           | 117,50           | 246,92           | 71,38            | 127,18           |
| 1994         | 43,95          | 207,14          | 179,32          | 94,32           | 172,03          | 198,11          | 269,91           | 64,95           | 33,66            | 144,12           | 146,51           | 57,48            |
| 1995         | 266,43         | 158,49          | 84,81           | 40,43           | 19,90           | 57,07           | 98,48            | 68,00           | 90,67            | 177,53           | 81,13            | 55,90            |
| 1996         | 188,27         | 176,89          | 115,87          | 97,79           | 29,72           | 62,98           | 178,53           | 151,28          | 198,14           | 179,19           | 66,18            | 65,82            |
| 1997         | 135,47         | 348,24          | 125,71          | 30,19           | 23,37           | 56,14           | 168,26           | 163,97          | 106,69           | 375,15           | 376,74           | 119,47           |
| 1998         | 108,07         | 316,80          | 205,72          | 231,78          | 299,95          | 89,33           | 146,25           | 273,16          | 451,80           | 204,43           | 80,24            | 83,88            |
| 1999         | 71,43          | 91,91           | 68,25           | 125,03          | 46,62           | 104,53          | 232,74           | 65,69           | 59,66            | 166,09           | 80,67            | 54,45            |
| 2000         | 73,86          | 94,20           | 80,65           | 76,64           | 56,77           | 51,77           | 138,08           | 58,85           | 307,31           | 341,26           | 94,28            | 107,56           |
| 2001         | 219,69         | 283,01          | 171,75          | 153,28          | 196,54          | 119,29          | 160,13           | 91,73           | 139,68           | 391,89           | 66,55            | 147,72           |
| 2002         | 125,50         | 85,88           | 65,48           | 95,31           | 69,67           | 137,80          | 105,44           | 218,39          | 163,04           | 229,88           | 238,66           | 228,23<br>215,30 |
| 2003         | 67,37          | 90,41           | 121,03          | 44,47           | 49,60           | 83,87           | 47,77            | 25,93           | 36,72            | 78,30<br>251,56  | 69,56            |                  |
| 2004         | 74,21<br>99,99 | 59,12<br>46,66  | 36,03<br>46,44  | 75,02<br>70,60  | 87,96<br>222,13 | 53,36<br>188,28 | 191,92<br>117,43 | 48,34<br>91,24  | 168,41<br>510,99 | 359,28           | 116,06<br>186,13 | 89,31<br>48,32   |
| 2006         | 65,94          | 52,79           | 32,63           | 23,73           | 19,62           | 24,04           | 53,59            | 148,61          | 53,85            | 50,02            | 120,95           | 99,24            |
| 2007         | 56,04          | 74,43           | 147,75          | 72,17           | 150,54          | 53,85           | 157,17           | 141,72          | 108,16           | 148,41           | 149,71           | 59,31            |
| 2008         | 111,03         | 116,21          | 97,51           | 72,49           | 145,57          | 70,08           | 71,84            | 68,10           | 125,29           | 288,57           | 342,80           | 99,55            |
| 2009         | 91,78          | 68,94           | 89,04           | 32,89           | 24,68           | 32,57           | 177,39           | 231,03          | 252,81           | 342,22           | 122,15           | 76,65            |
| 2010         | 198,89         | 234,91          | 107,03          | 177,51          | 364,03          | 120,57          | 122,28           | 125,03          | 65,67            | 82,11            | 76,71            | 173,09           |
| 2011         | 183,05         | 330,05          | 125,63          | 96,67           | 106,18          | 71,35           | 232,91           | 370,11          | 584,20           | 112,51           | 61,20            | 44,25            |
| 2012         | 105,97         | 105,84          | 46,24           | 23,14           | 29,73           | 101,28          | 71,95            | 90,66           | 41,05            | 102,74           | 40,68            | 32,75            |
| 2013         | 61,99          | 56,73           | 144,64          | 58,74           | 26,44           | 97,28           | 102,92           | 260,02          | 259,69           | 193,86           | 55,05            | 71,98            |
| 2014         | 126,85         | 50,91           | 90,38           | 83,22           | 144,23          | 307,06          | 259,23           | 68,97           | 94,91            | 248,85           | 124,94           | 107,05           |
| 2015         | 227,80         | 173,59          | 80,13           | 72,97           | 57,92           | 163,20          | 286,60           | 111,52          | 218,97           | 554,12           | 252,48           | 108,59           |
| 2016         | 115,71         | 168,43          | 168,73          | 128,56          | 157,89          | 72,39           | 92,24            | 91,83           | 86,02            | 150,46           | 80,46            | 92,01            |
| 2017         | 230,08         | 114,78          | 46,61           | 48,32           | 115,70          | 544,63          | 40,27            | 64,70           | 26,63            | 51,63            | 128,98           | 152,76           |
| 2018         | 242,51         | 79,00           | -               | -               | -               | -               | -                | -               | -                | -                | -                | -                |

Fonte: Estelar (2018).





Tabela 7.4 - Vazões médias mensais da Estação Passo Caru (71550000) em m<sup>3</sup>/s.

| Passo Caru (71550000) |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|-----------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Ano/Mês               | Jan              | Fev              | Mar              | Abr              | Mai              | Jun              | Jul              | Ago              | Set              | Out              | Nov              | Dez              |
| 1958                  | 123,17           | 138,51           | 438,95           | 116,96           | 87,37            | 264,62           | 107,41           | 238,32           | 448,19           | 368,07           | 325,29           | 232,38           |
| 1959                  | 133,31           | 209,77           | 144,65           | 148,14           | 207,63           | 122,25           | 88,13            | 102,40           | 294,78           | 172,07           | 73,03            | 61,07            |
| 1960                  | 73,72            | 157,56           | 143,57           | 128,51           | 94,23            | 133,25           | 90,70            | 326,50           | 212,31           | 250,69           | 306,65           | 147,07           |
| 1961                  | 154,25           | 149,02           | 426,39           | 225,95           | 134,50           | 95,64            | 124,39           | 44,73            | 670,72           | 811,60           | 742,34           | 278,76           |
| 1962                  | 119,79           | 129,23           | 131,58           | 60,71            | 234,27           | 154,46           | 186,85           | 103,23           | 328,98           | 207,46           | 132,73           | 74,53            |
| 1963<br>1964          | 188,35<br>74,08  | 543,13<br>133,86 | 414,05<br>100,07 | 205,75           | 79,00            | 39,00<br>93,37   | 48,73<br>105,08  | 120,24           | 228,70           | 791,41<br>280,69 | 463,40           | 184,88<br>93,07  |
| 1965                  | 62,89            | 50,06            | 45,82            | 128,31<br>80,92  | 164,32<br>266,50 | 102,36           | 255,35           | 193,35<br>532,74 | 263,94<br>754,18 | 371,94           | 136,18<br>158,73 | 274,16           |
| 1966                  | 334,01           | 700,26           | 528,08           | 195,29           | 108,91           | 279,92           | 222,84           | 209,65           | 488,59           | 331,57           | 261,00           | 289,37           |
| 1967                  | 168,51           | 242,83           | 272,16           | 104,74           | 77,82            | 116,52           | 97,53            | 284,76           | 469,31           | 331,32           | 197,16           | 201,20           |
| 1968                  | 57,79            | 38,14            | 39,14            | 40,00            | 27,84            | 27,76            | 63,14            | 21,43            | 129,70           | 83,31            | 269,34           | 169,43           |
| 1969                  | 324,79           | 463,84           | 328,24           | 389,53           | 134,26           | 281,96           | 247,02           | 120,76           | 190,83           | 106,20           | 244,61           | 76,49            |
| 1970                  | 136,02           | 98,71            | 93,79            | 76,24            | 137,22           | 309,17           | 313,14           | 154,79           | 245,69           | 207,10           | 74,33            | 163,39           |
| 1971                  | 517,42           | 365,05           | 432,30           | 526,80           | 406,30           | 463,92           | 366,06           | 332,06           | 221,37           | 218,52           | 53,06            | 38,01            |
| 1972                  | 74,38            | 364,20           | 194,04           | 125,28           | 54,32            | 256,85           | 238,23           | 690,95           | 741,59           | 412,36           | 244,57           | 207,84           |
| 1973                  | 202,14           | 330,80           | 180,17           | 90,26            | 234,46           | 381,86           | 398,60           | 620,86           | 590,33           | 204,77           | 177,67           | 105,87           |
| 1974                  | 161,90           | 210,15           | 253,47           | 130,57           | 59,43            | 195,65           | 144,47           | 83,50            | 233,80           | 80,07            | 151,47           | 75,55            |
| 1975                  | 119,02           | 124,03           | 143,14           | 73,34            | 64,26            | 136,10           | 80,73            | 315,44           | 691,72           | 601,89           | 153,26           | 443,99           |
| 1976                  | 300,05           | 108,71           | 239,10           | 83,99            | 238,31           | 362,25           | 189,37           | 446,61           | 220,67           | 171,00           | 176,94           | 462,25           |
| 1977                  | 283,23           | 479,93           | 216,31           | 170,73           | 52,14            | 60,52            | 108,13           | 552,98           | 251,04           | 427,05           | 430,03           | 166,72           |
| 1978                  | 143,75           | 123,52           | 115,12           | 50,71            | 40,71            | 45,92            | 82,01            | 62,76            | 188,28           | 108,66           | 158,68           | 105,48           |
| 1979                  | 85,07            | 46,56            | 66,52            | 94,84            | 360,61           | 168,61           | 212,59           | 167,54           | 124,81           | 830,11           | 552,80           | 346,38           |
| 1980                  | 145,32           | 104,71           | 376,33           | 136,54           | 147,74           | 100,31           | 266,79           | 674,75           | 605,21           | 294,63           | 296,26           | 537,70           |
| 1981                  | 407,49           | 340,31           | 95,14            | 87,04            | 63,99            | 78,81            | 91,12            | 77,28            | 179,85           | 158,04           | 133,57           | 111,96           |
| 1982                  | 72,83            | 236,36           | 166,16           | 83,77            | 71,28            | 234,09           | 448,16           | 270,56           | 134,52           | 373,10           | 1029,00          | 324,17           |
| 1983                  | 289,22           | 397,39           | 550,72           | 288,47           | 830,72           | 762,89           | 2575,70          | 1242,90          | 444,69           | 258,38           | 255,01           | 312,19           |
| 1984<br>1985          | 207,79           | 176,66           | 197,64           | 152,96           | 184,90           | 562,72           | 491,07           | 1295,40          | 341,02           | 493,43           | 295,39           | 286,36           |
| 1985                  | 96,11<br>71,99   | 329,59           | 177,77           | 192,44           | 130,16           | 69,28<br>148,29  | 102,17           | 93,34            | 176,49           | 108,67           | 180,17           | 38,83            |
| 1987                  | 365,44           | 104,85<br>300,81 | 59,10<br>102,41  | 98,30<br>153,30  | 155,74<br>685,98 | 308,40           | 72,12<br>247,64  | 87,63<br>247,88  | 188,23<br>207,53 | 288,17<br>580,05 | 417,92<br>151,39 | 283,64<br>107,40 |
| 1988                  | 96,57            | 126,53           | 119,97           | 161,07           | 579,78           | 319,37           | 137,96           | 64,15            | 207,33           | 185,64           | 84,65            | 79,34            |
| 1989                  | 255,66           | 400,63           | 166,97           | 177,15           | 440,39           | 86,09            | 116,56           | 135,31           | 752,99           | 288,67           | 103,81           | 65,66            |
| 1990                  | 523,98           | 301,48           | 206,67           | 319,92           | 272,04           | 1126,20          | 410,05           | 322,94           | 524,29           | 817,13           | 682,32           | 218,97           |
| 1991                  | 107,50           | 102,06           | 51,70            | 41,27            | 41,75            | 232,60           | 175,28           | 274,37           | 91,57            | 287,79           | 227,52           | 195,06           |
| 1992                  | 151,72           | 258,30           | 286,01           | 174,11           | 594,40           | 735,20           | 852,77           | 658,22           | 363,20           | 203,44           | 227,13           | 155,29           |
| 1993                  | 186,13           | 394,45           | 356,51           | 140,55           | 201,82           | 261,45           | 588,39           | 133,31           | 413,50           | 620,54           | 164,76           | 281,58           |
| 1994                  | 97,31            | 468,02           | 354,12           | 229,69           | 291,56           | 421,10           | 603,57           | 151,50           | 79,11            | 328,87           | 384,55           | 125,69           |
| 1995                  | 638,22           | 364,96           | 176,28           | 81,06            | 39,89            | 125,42           | 178,93           | 114,06           | 209,00           | 424,85           | 158,91           | 118,87           |
| 1996                  | 370,80           | 440,15           | 225,57           | 235,19           | 67,05            | 160,96           | 369,48           | 334,70           | 430,20           | 415,50           | 159,51           | 184,08           |
| 1997                  | 259,34           | 748,96           | 286,70           | 69,10            | 59,24            | 172,88           | 394,94           | 425,70           | 179,59           | 948,49           | 904,23           | 252,12           |
| 1998                  | 317,82           | 617,27           | 502,08           | 688,20           | 566,78           | 163,96           | 294,49           | 641,34           | 737,69           | 418,41           | 132,36           | 137,27           |
| 1999                  | 129,74           | 197,65           | 111,68           | 231,77           | 85,35            | 192,39           | 573,78           | 110,82           | 100,51           | 346,02           | 124,88           | 79,84            |
| 2000                  | 127,05           | 180,43           | 176,20           | 133,82           | 119,39           | 113,02           | 297,03           | 147,18           | 792,38           | 764,18           | 196,34           | 225,87           |
| 2001                  | 423,06           | 615,58           | 298,21           | 279,78           | 345,79           | 247,59           | 304,88           | 162,35           | 243,90           | 810,84           | 151,80           | 249,54           |
| 2002                  | 187,28<br>148,84 | 182,64<br>187,03 | 132,24<br>268,25 | 214,99<br>102,13 | 176,54<br>102,32 | 293,60<br>187,93 | 218,44<br>117,96 | 518,38<br>55,41  | 430,16<br>61,87  | 594,79<br>167,96 | 587,07<br>149,21 | 495,67<br>461,83 |
| 2003                  | 201,33           | 117,38           | 62,98            | 134,95           | 205,05           | 129,07           | 428,87           | 122,68           | 337,43           | 599,06           | 343,69           | 210,34           |
| 2005                  | 221,32           | 98,94            | 87,92            | 178,94           | 563,67           | 475,63           | 268,10           | 226,84           | 1173,30          | 840,57           | 436,71           | 119,10           |
| 2006                  | 129,86           | 105,01           | 85,44            | 59,75            | 32,47            | 27,75            | 38,41            | 129,23           | 110,02           | 110,79           | 257,52           | 298,16           |
| 2007                  | 164,61           | 201,18           | 358,04           | 162,59           | 479,00           | 174,47           | 437,84           | 304,00           | 232,01           | 531,20           | 543,82           | 191,04           |
| 2008                  | 250,25           | 241,80           | 195,37           | 190,73           | 271,72           | 220,86           | 195,42           | 164,36           | 337,91           | 745,53           | 735,48           | 170,93           |
| 2009                  | 174,09           | 121,31           | 128,79           | 48,33            | 39,32            | 60,63            | 379,83           | 490,45           | 652,04           | 815,21           | 248,60           | 183,13           |
| 2010                  | 362,48           | 383,41           | 213,16           | 564,95           | 778,25           | 253,30           | 232,64           | 251,79           | 114,95           | 162,45           | 154,46           | 434,90           |
| 2011                  | 366,86           | 729,85           | 350,20           | 297,45           | 204,11           | 155,47           | 567,62           | 836,75           | 1235,70          | 258,65           | 140,45           | 89,44            |
| 2012                  | 174,67           | 169,03           | 84,51            | 49,79            | 81,28            | 191,14           | 170,94           | 201,66           | 77,75            | 220,38           | 97,16            | 91,18            |
| 2013                  | 205,50           | 121,69           | 310,26           | 126,00           | 56,71            | 208,67           | 220,77           | 557,75           | 557,05           | 415,84           | 118,08           | 154,40           |
| 2014                  | 272,10           | 109,20           | 193,87           | 178,51           | 309,38           | 658,66           | 556,06           | 147,94           | 203,59           | 533,79           | 268,00           | 229,63           |
| 2015                  | 488,64           | 372,36           | 171,88           | 156,52           | 124,24           | 350,07           | 614,77           | 239,21           | 469,70           | 1188,61          | 541,58           | 232,93           |
| 2016                  | 248,20           | 361,29           | 361,93           | 275,77           | 338,68           | 155,28           | 197,86           | 196,98           | 184,52           | 322,74           | 172,59           | 197,37           |
| 2017                  | 493,53           | 246,21           | 99,98            | 103,65           | 248,18           | 1168,25          | 86,38            | 138,78           | 57,12            | 110,75           | 276,67           | 327,68           |
| 2018                  | 520,19           | 169,46           | -                | -                | -                | -                | -                | -                | -                | -                | -                |                  |

Dados estimados por correlação entre áreas de drenagem.

Fonte: Adaptado de Estelar (2018).

A partir dos dados de vazão média mensal, foram definidas as curvas de permanência mensais para a estações selecionadas, demonstradas na Figura 7.1, as quais foram obtidas considerando a posição de plotagem de Weibull. A título de esclarecimento, menciona-se que as curvas de permanência de vazões relacionam as vazões com a percentagem do tempo em que estas são igualadas ou superadas. São obtidas a partir do ordenamento das séries históricas de vazões, indicando a distribuição da frequência amostral das vazões registradas em uma dada seção fluvial e servindo para indicar o percentual de tempo em que o regime do curso de água sustenta vazões maiores ou iguais a um valor de referência. Permitem, assim, visualizar de imediato a potencialidade natural do rio, destacando a vazão mínima e o grau de





permanência de qualquer valor da vazão. Devido ao seu caráter probabilístico, quanto maior a série de dados, mais representativa é a curva de permanência.

Por meio das curvas de permanência apresentadas demonstradas na Figura 7.1, foram obtidas as vazões de referência Q<sub>95</sub> e Q<sub>98</sub>, que representam, respectivamente, as descargas com 95% e 98% de permanência nos diferentes pontos do rio Canoas.

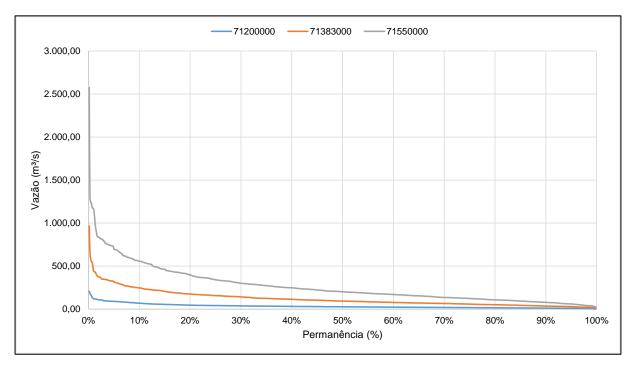



Figura 7.1 - Curvas de permanência mensal das estações selecionadas.

Além dos pontos correspondentes às estações previamente selecionadas, é imprescindível a avaliação da disponibilidade hídrica no exutório da bacia do rio Canoas. Neste contexto, em virtude da indisponibilidade de dados de monitoramento em locais próximos à foz do rio e da influência dos empreendimentos hidrelétricos em operação, foram utilizadas as vazões de referência ( $Q_{95}$  e  $Q_{98}$ ) estimadas pelo PERH-SC (SDE, 2017) para o referido ponto.

Por fim, resumidamente, a Tabela 7.5 demonstra a disponibilidade hídrica na calha principal do rio Canoas.

Tabela 7.5 - Disponibilidade hídrica na calha principal do rio Canoas.

|                   | Pontos de referência |          |          |            |  |  |
|-------------------|----------------------|----------|----------|------------|--|--|
| Vazão (m³/s)      | 71200000             | 71383000 | 71550000 | Exultório* |  |  |
| Q <sub>95</sub>   | 8,46                 | 29,75    | 59,24    | 88,19      |  |  |
| $\mathbf{Q}_{98}$ | 6,36                 | 21,24    | 40,00    | 62,46      |  |  |

Nota: \* Fonte: SDE (2017).

# 8 BALANÇO HÍDRICO SUPERFICIAL

Com a finalidade de avaliar, em termos macro, o nível de comprometimento das disponibilidades hídricas em face das demandas e consumos atuais e futuros, apresenta-se neste item a comparação entre esses três (3) aspectos trabalhados ao longo do estudo em







tela. Tal análise consistiu, para o cenário atual e os cenários futuros, em confrontar os valores de oferta hídrica com os de demandas e consumos, buscando identificar déficits ou superávits hídricos para a área de estudo. Neste contexto, é importante ressaltar a distinção entre demanda hídrica e consumo hídrico. Entende-se por demanda hídrica a quantidade de água necessária ou que é solicitada para a execução de uma determinada atividade; representa, assim, a quantidade de água que é extraída do manancial.

O conceito de consumo hídrico, por sua vez, é entendido como a parcela da demanda que é efetivamente utilizada (ou gasta) no desenvolvimento dessa atividade, seja por sua inclusão como matéria-prima no processo, seja por perdas como a evaporação e infiltração, ou mesmo a degradação da água demandada de tal forma que seja impossível sua utilização posterior.

A diferença quantitativa entre a demanda e o consumo é denominada de retorno, representando a parcela restante da demanda que volta ao manancial, a partir do sistema de drenagem e/ou sistemas de esgotamento sanitários e em condições de ser utilizada a jusante, ainda que conte com perdas de qualidade significativas.

A quantificação dos usos consuntivos utiliza ambos os conceitos. Quando o conceito utilizado for "demanda", os valores apresentados referem-se à parcela retirada do manancial, independentemente do percentual que é efetivamente utilizado; já quando se fizer referência ao "consumo", estar-se-á considerando o montante que realmente será consumido, excluindose do valor a parcela de água que retorna ao manancial.

Os usos consuntivos, assim como as próprias disponibilidades hídricas, apresentam variação, em termos quantitativos, ao longo do ano. Essa variação é associada à sazonalidade, seja da atividade usuária, seja das condições em que se processa essa atividade.

Neste estudo, as demandas associadas aos usos consuntivos foram determinadas em termos médios. Constatou-se que a eventual sazonalidade da demanda não pode ser estimada com precisão suficiente ou não é relevante, considerando a variação climática e seu impacto sobre o consumo.

Feitos tais esclarecimentos, num primeiro momento, idealizou-se realizar o balanço hídrico para cada município da área de estudo, visando, assim, uma avaliação mais local acerca do tema aqui tratado. Entretanto, em face da disponibilidade de dados, optou-se por adotar a abordagem regional.

De forma mais específica, para a execução dessa avaliação, foram levadas em consideração as seguintes informações:

- demandas hídricas: caracterizadas de acordo com os múltiplos usos a que se destinam os recursos hídricos, isto é, abastecimento urbano; abastecimento rural; criação animal; irrigação e uso industrial; e,
- ofertas hídricas: representadas pelas vazões de permanência (Q<sub>95</sub> e Q<sub>98</sub>) estipuladas para diferentes trechos do rio Canoas.

É importante ressaltar que esta comparação considerou apenas a pressão sobre os recursos hídricos superficiais, visto que não foram efetuados estudos de disponibilidade hídrica subterrânea.

Assim, para balizamento das avaliações aqui realizadas foram adotadas algumas premissas, descritas a seguir:







A European Environment Agency e a Organização das Nações Unidas (ONU) utilizam o Índice de Retirada de Água ou Water Exploitation Index, que é igual ao quociente entre a retirada total anual e a vazão média de longo termo. Este índice adota a seguinte classificação:

- < 5% Excelente. Pouca ou nenhuma atividade de gerenciamento é necessária. A água é considerada um bem livre;
- 5% a 10% A situação é confortável, podendo ocorrer necessidade de gerenciamento para solução de problemas locais de abastecimento;
- 10% a 20% Preocupante. A atividade de gerenciamento é indispensável, exigindo a realização de investimentos médios;
- 20% a 40% A situação é crítica, exigindo intensa atividade de gerenciamento e grandes investimentos; e,
- > 40% A situação é muito crítica.

O estudo da ANA intitulado como Disponibilidades e Demandas de Recursos Hídricos no **Brasil** (ANA, 2005) considera, no entanto, o indicador que relaciona a Q<sub>95</sub> e as demandas hídricas como ideal para refletir a situação real de utilização dos recursos hídricos no país. Para a definição de faixas de classificação deste indicador, o estudo elaborado por ANA (2005) adota as faixas preconizadas pela ONU, considerando que estas são adequadas para o caso brasileiro.

No que se refere a Santa Catarina, para fins de balanço hídrico no contexto do PERH – SC (SDE, 2017), adotou-se a vazão de referência Q<sub>98</sub> sendo mais restritiva que a Q<sub>mlt</sub> e a Q<sub>95</sub>, empregadas pela ONU e pela ANA, respectivamente. Ainda em relação ao Estado, mencionase a Portaria SDS nº 043, de 13 de agosto de 2012 (SANTA CATARINA, 2010), que estabelece como vazão outorgável 50% da Q<sub>98</sub>.

Considerando este contexto, neste estudo foram adotadas as faixas de classificação indicadas pela European Environment Agency e ONU para o enquadramento da razão entre a demanda hídrica total e vazões de estiagem, sendo utilizadas como base de comparação 50% do valor estimado das vazões de referência Q<sub>95</sub> e Q<sub>98</sub>.

#### 8.1 Resultados e Análises

Apresentam-se, na Tabela 8.1 e Tabela 8.2, os valores referentes a 50% das vazões de referência ao longo do rio Canoas e os dados de captação (Qcap), retorno (Qret) e consumo (Qcon) total para todos os cenários avaliados.





Tabela 8.1 - Disponibilidade ao longo do rio Canoas.

| Ponto de Referência     | 50% da Q <sub>95</sub> (m³/s) | 50% da Q <sub>98</sub> (m³/s) |
|-------------------------|-------------------------------|-------------------------------|
| 71200000 (Alto Canoas)  | 4,23                          | 3,18                          |
| 71383000 (Médio Canoas) | 14,88                         | 10,62                         |
| 71550000 (Baixo Canoas) | 29,62                         | 20,00                         |
| Exultório               | 44,10                         | 31,23                         |

Tabela 8.2 - Demandas, consumos e retornos hídricos na área de estudo.

| Ano  | Qcap (m³/s) | Qret (m³/s) | Qcon (m³/s) |
|------|-------------|-------------|-------------|
| 2021 | 2,20        | 1,28        | 0,92        |
| 2022 | 2,24        | 1,30        | 0,94        |
| 2030 | 2,55        | 1,49        | 1,06        |
| 2040 | 3,02        | 1,77        | 1,25        |

Nota: Qcap = vazão captada; Qret = vazão de retorno e Qcon = vazão consumida.

Com base nos resultados apresentados, verificou-se que, ao longo de todo o rio Canoas, a disponibilidade hídrica é suficiente para suprir toda a demanda de água na área de estudo.

Exemplificando, cita-se que a menor vazão de referência estimada (50% da Q<sub>98</sub> no ponto de referência 71200000) correspondente a 3,18 m<sup>3</sup>/s, sendo superior à maior demanda estimada (cenário de 2040), que representa 3,02 m³/s, o que denota diferença de 0,16 m³/s. Paralelamente, considerando a vazão que é, de fato, prevista para ser consumida em 2040, essa diferença representa o valor de 1,93 m<sup>3</sup>/s.

Adicionalmente, a Tabela 8.3 demonstra os resultados da estimativa do Índice de Retirada de Água para cada cenário, que corresponde à vazão captada dividida pela vazão de referência. Esta avaliação limitou-se aos dados de disponibilidade referentes à foz do rio Canoas, que engloba toda a área de estudo, assim como as demandas apresentadas.

Tabela 8.3 - Índices de Retirada da Água.

| Ano  | Qcap/(50% da Q <sub>95</sub> ) | Qcap/(50% da Q <sub>98</sub> ) |
|------|--------------------------------|--------------------------------|
| 2021 | 5,0%                           | 7,0%                           |
| 2022 | 5,1%                           | 7,2%                           |
| 2030 | 5,8%                           | 8,2%                           |
| 2040 | 6,8%                           | 9,7%                           |

Nota: Qcap = vazão captada.

A título de recordação, de acordo com a European Environment Agency e ONU, o Índice de Retirada de Água com valor de 5% a 10% denota situação, em termos de disponibilidade hídrica, confortável, podendo ocorrer necessidade de gerenciamento para solução de problemas locais de abastecimento.

Conforme resultados, para todos os cenários estipulados, o índice avaliado ficou dentro da faixa descrita anteriormente, ratificando o balanço hídrico favorável.

#### CONFLITOS POR USO DA ÁGUA 9

A intensa utilização dos recursos hídricos, sejam eles consuntivos ou não, aliada a ações antrópicas, tais como o desmatamento, especialmente de matas ciliares, práticas de







monoculturas e outras atividades agropecuárias, além da presença industrial e de aproveitamentos hidrelétricos nos municípios estudados, pode corroborar para a ocorrência de conflitos envolvendo os recursos hídricos, fazendo-se, portanto, necessária a investigação acerca deste tema no âmbito da avaliação dos usos da água.

Para tanto, foi realizada, inicialmente, a análise da situação atual da região, buscando-se, por meio de fontes secundárias, informações acerca de conflitos relacionados aos usos da água já existentes na área de estudo.

Neste contexto, menciona-se que não foram identificados conflitos relacionados à utilização dos recursos hídricos em nenhum dos municípios analisados. Cabe destacar que existem conflitos concernentes à formação dos reservatórios da UHE Campos Novos e da UHE Garibaldi, conforme destacado no Volume I - Diagnóstico Socioambiental Tais registros, entretanto, se relacionam ao uso da terra e não ao uso da água.

Outra avaliação realizada valeu-se das informações levantadas em campo, merecendo destaque a balsa do Valeco, que liga as comunidades Santa Cruz do Pery e Santa Catarina, a qual será afetada pela formação do reservatório da PCH Canoas. O local de travessia desta balsa dista, aproximadamente, 1,4 km do eixo do barramento da PCH Canoas, suscitando preocupação, por parte do balseiro, da continuidade dessa atividade.

Nesse sentido, a implantação do empreendimento hidrelétrico poderá gerar conflito no contexto dos usos não consuntivos, especialmente em relação ao transporte hidroviário representado pela balsa do Valeco.

Paralelamente, com relação à propagação de cheias, como resultado advindo da modelagem matemática, não é esperado conflito em virtude da implantação da PCH Canoas, haja vista que as simulações não apontam alterações significativas no regime sazonal de vazões.

Similarmente, em relação à qualidade da água, os resultados apresentados por Prime (2021) apontam poucas alterações nos parâmetros analisados nos diferentes cenários, não sendo, portanto, previstos conflitos relacionados ao tema.

Finalmente, realizou-se a análise de potencial de conflito tendo como base os resultados de demanda, consumo e disponibilidade hídrica na região de estudo, bem como a comparação entre esses aspectos. Conforme apresentado no item 8.1 (Resultados e Análises) a disponibilidade hídrica, em termos de quantidade, apresenta-se suficiente para suprir as demandas, assim como os consumos estimados para todos os cenários avaliados. Neste sentido, é plausível admitir que a ocorrência de conflitos relacionados à escassez de água, mesmo num horizonte de cerca de 20 anos, é pouco provável.





# 10 REFERÊNCIAS BIBLIOGRÁFICAS

AGÊNCIA DE DESENVOLVIMENTO DO TURISMO DE SANTA CATARINA (SANTUR). Pesca. Disponível em: < http://turismo.sc.gov.br/atividade/pesca/>. Acesso em: 08 out. 2021.

AGÊNCIA NACIONAL DE ÁGUAS (ANA). Água na indústria: uso e coeficientes técnicos. Brasília: ANA, 2017. 37 p. Disponível em: <a href="http://www.snirh.gov.br/portal/snirh/snirh-">http://www.snirh.gov.br/portal/snirh/snirh-</a> 1/acesso-tematico/usos-da-agua/aguanaindustria\_usoecoeficientestecnicos.pdf>. em: 15 out. 2021.

AGÊNCIA NACIONAL DE ÁGUAS (ANA). Atlas Esgotos: Despoluição de Bacias 2017. Hidrográficas. Disponível em: <a href="https://metadados.snirh.gov.br/geonetwork/srv/por/catalog.search#/metadata/1d8cea87-">https://metadados.snirh.gov.br/geonetwork/srv/por/catalog.search#/metadata/1d8cea87-</a> 3d7b-49ff-86b8-966d96c9eb01>, Acesso em: 15 out. 2021.

AGÊNCIA NACIONAL DAS ÁGUAS (ANA). Atlas Irrigação 2021: Uso da Água na Agricultura Irrigada. 2021c. Disponível em: <a href="https://portal1.snirh.gov.br/ana/apps/storymaps/stories/a874e62f27544c6a986da1702a911c">https://portal1.snirh.gov.br/ana/apps/storymaps/stories/a874e62f27544c6a986da1702a911c</a> 6b>. Acesso em: 16 jun. 2021.

AGÊNCIA NACIONAL DE ÁGUAS (ANA). Disponibilidade e demandas de recursos hídricos brasil. Brasília, 2005. Disponível no https://arquivos.ana.gov.br/planejamento/planos/pnrh/VF%20DisponibilidadeDemanda.pdf. Acesso em: 15 out. 2021.

AGÊNCIA NACIONAL DE ÁGUAS (ANA). Disponibilidade e demandas de recursos hídricos no brasil. Cadernos de Recursos Hídricos 2. Superintendência de Planejamento de Recursos Hídricos e Usos Múltiplos. Brasília, 2007.

AGÊNCIA NACIONAL DE ÁGUAS (ANA). Outorga dos direitos de uso de recursos hídricos. Brasília: ANA, 2019. Disponível em: <a href="http://www.snirh.gov.br/portal/snirh/centrais-">http://www.snirh.gov.br/portal/snirh/centrais-</a> de-conteudos/conjuntura-dos-recursos-hidricos/ana\_encarte\_outorga\_conjuntura2019.pdf>. Acesso em: 27 jul. 2021.

AGÊNCIA NACIONAL DE ÁGUAS (ANA). Outorgas emitidas. 2021a. Disponível em: <a href="https://www.ana.gov.br/regulacao/principais-servicos/outorgas-emitidas">https://www.ana.gov.br/regulacao/principais-servicos/outorgas-emitidas</a>. Acesso em: 29 jul. 2021.

AGÊNCIA NACIONAL DE ÁGUAS (ANA). Usos consultivos da água no Brasil (1931 a 2030). 2021b. Disponível <a href="https://app.powerbi.com/view?r=eyJrljoiNmFhMjA4NmQtY2Y4Yy00OWE4LTkyNzEtOTk2M">https://app.powerbi.com/view?r=eyJrljoiNmFhMjA4NmQtY2Y4Yy00OWE4LTkyNzEtOTk2M</a> TY4MTQzMTliliwidCl6ImUwYml0MDEyLTqxMGltNDY5YS04YjRkLTY2N2ZjZDFiYWY4OCJ 9>. Acesso em: 29 jul. 2021.

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL). Sistema de Informações de Geração ANEEL (SIGA). 2021. Disponível <a href="https://app.powerbi.com/view?r=eyJrljoiNjc4OGYyYjQtYWM2ZC00YjllLWJIYmEtYzdkNTQ1">https://app.powerbi.com/view?r=eyJrljoiNjc4OGYyYjQtYWM2ZC00YjllLWJIYmEtYzdkNTQ1</a> MTc1NjM2liwidCl6ljQwZDZmOWl4LWVjYTctNDZhMi05MmQ0LWVhNGU5YzAxNzBlMSlsl mMiOjR9>. Acesso em: 29 jul. 2021.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 9.649. Projeto de redes coletoras de esgoto sanitário. Rio de Janeiro, 1986. 7p.

BRASIL. Congresso Nacional. Lei nº. 9433, de 8 de janeiro de 1997. Institui a Política Nacional de Recursos Hídricos, cria o Sistema Nacional de Gerenciamento de Recursos Hídricos,





regulamenta o inciso XIX do art. 21 da Constituição Federal, e altera o art. 1º da Lei nº 8.001, de 13 de março de 1990, que modificou a Lei nº 7.990, de 28 de dezembro de 1989. Brasília, DF, 8 jan. 1997.

BRASIL. Lei n.º 14.026, de 15 de julho de 2020. Atualiza o marco legal do saneamento básico e altera a Lei nº 9.984, de 17 de julho de 2000, para atribuir à Agência Nacional de Águas e Saneamento Básico (ANA) competência para editar normas de referência sobre o serviço de saneamento, a Lei nº 10.768, de 19 de novembro de 2003, para alterar o nome e as atribuições do cargo de Especialista em Recursos Hídricos, a Lei nº 11.107, de 6 de abril de 2005, para vedar a prestação por contrato de programa dos serviços públicos de que trata o art. 175 da Constituição Federal, a Lei nº 11.445, de 5 de janeiro de 2007, para aprimorar as condições estruturais do saneamento básico no País, a Lei nº 12.305, de 2 de agosto de 2010, para tratar dos prazos para a disposição final ambientalmente adequada dos rejeitos, a Lei nº 13.089, de 12 de janeiro de 2015 (Estatuto da Metrópole), para estender seu âmbito de aplicação às microrregiões, e a Lei nº 13.529, de 4 de dezembro de 2017, para autorizar a União a participar de fundo com a finalidade exclusiva de financiar serviços técnicos especializados. Disponível em: <a href="https://www.in.gov.br/web/dou/-/lei-n-14.026-de-15-de-julho-">https://www.in.gov.br/web/dou/-/lei-n-14.026-de-15-de-julho-</a> de-2020-267035421>, Acesso em: 26 out. 2021,

BRASIL. Ministério das Cidades. Sistema Nacional de Informações sobre Saneamento (SNIS). Diagnóstico dos Serviços de Água e Esgotos: 2019. 2019.

BRASIL. Ministério do Meio Ambiente (MMA). Caderno da região hidrográfica Atlântico Leste / Ministério do Meio Ambiente, Secretaria de Recursos Hídricos. – Brasília: MMA, 2006 a. 156 p.

CAMPOS NOVOS. Prefeitura Municipal de Campos Novos. Portal de Turismo de Campos Disponível <a href="https://turismo.camposnovos.sc.gov.br/o-que-">https://turismo.camposnovos.sc.gov.br/o-que-</a> Novos. 2021. em: fazer/item/parque-estadual-rio-canoas>. Acesso em: 08 out. 2021.

ESTELAR ENGENHEIROS ASSOCIADOS. Projeto Básico PCH Canoas. Statkraft. Volume I - Relatório Técnico. 2018. 336 p.

FUNDAÇÃO BANCO DO BRASIL (FBB); MINISTÉRIO DO MEIO AMBIENTE (MMA); FUNDAÇÃO DE APOIO À UNIVERSIDADE DE VIÇOSA (FUNARBE). Relatório final dos coeficientes técnicos de recursos hídricos das atividades industrial e agricultura irrigada: Relatório Técnico Brasília, DF. 2011. Disponível 6. em: <a href="https://www.terrabrasilis.org.br/ecotecadigital/pdf/desenvolvimento-de-matriz-de-ecotecadigital/pdf/desenvolvimento-de-matriz-de-ecotecadigital/pdf/desenvolvimento-de-matriz-de-ecotecadigital/pdf/desenvolvimento-de-matriz-de-ecotecadigital/pdf/desenvolvimento-de-matriz-de-ecotecadigital/pdf/desenvolvimento-de-matriz-de-ecotecadigital/pdf/desenvolvimento-de-matriz-de-ecotecadigital/pdf/desenvolvimento-de-matriz-de-ecotecadigital/pdf/desenvolvimento-de-matriz-de-ecotecadigital/pdf/desenvolvimento-de-matriz-de-ecotecadigital/pdf/desenvolvimento-de-matriz-de-ecotecadigital/pdf/desenvolvimento-de-matriz-de-ecotecadigital/pdf/desenvolvimento-de-matriz-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-de-ecotecadigital/pdf/desenvolvimento-ecotecadigital/pdf/desenvolvimento-ecotecadigital/pdf/desenvolvimento-ecotecadigital/pdf/de coeficientes-tecnicos-para-recursos-hidricos-no-brasil.pdf>. Acesso em: 01 out. 2021.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Censo Agropecuário 2006. 2006. Disponível em: <a href="http://www.ibge.gov.br/">http://www.ibge.gov.br/</a>. Acesso em: 13 jun. 2021.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Censo Agropecuário 2017. 2017. Disponível em: <a href="http://www.ibge.gov.br/">http://www.ibge.gov.br/>. Acesso em: 13 jun. 2021.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Produção Agrícola Municipal 2019. Rio 2020. Disponível de Janeiro, em: <a href="https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-">https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-</a> agricola-municipal-culturas-temporarias-e-permanentes.html?=&t=conceitos-e-metodos>. Acesso em: 07 abr. 2021.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Sistema IBGE de Recuperação Automática SIDRA. Cadastro Central de Empresas (CEMPRE) Tabelas. 2019. Disponível em: < https://sidra.ibge.gov.br/pesquisa/cempre/tabelas>. Acesso em: 15 out. 2021.







NOTUS. Plano Municipal de Saneamento Básico de Correia Pinto: produto 07. 2015a. Disponível em: <a href="https://cisama.sc.gov.br/assets/uploads/5925b-produto-07-versao-final-do-05">https://cisama.sc.gov.br/assets/uploads/5925b-produto-07-versao-final-do-05</a> pmsb-correia-pinto.pdf>. Acesso em: 02 ago. 2021.

NOTUS. Plano Municipal de Saneamento Básico de Otacílio Costa: produto 07. 2015b. Disponível em: <a href="https://cisama.sc.gov.br/assets/uploads/6b21f-produto-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-final-do-07-versao-f pmsb-otacilio-costa.pdf>. Acesso em: 02 ago. 2021.

ONS/ANA/ANEEL/MME/CONSÓRCIO FAHMA-DZETA. Estimativa das vazões para atividades de uso consuntivo da água em bacias do Sistema Interligado Nacional (SIN). Relatório Final: Metodologia e resultados consolidados. 2005. Disponível em: <a href="https://www.ceivap.org.br/downloads/Relatorio%20final%20ONS.pdf">https://www.ceivap.org.br/downloads/Relatorio%20final%20ONS.pdf</a>. Acesso em: 29 set. 2021.

PRIME. Modelagem hidrodinâmica e de qualidade da água. Brasília, DF, 2021.

PROGRAMA DAS NAÇÕES UNIDAS PARA O DESENVOLVIMENTO (PNUD); FUNDAÇÃO JOÃO PINHEIRO (FJP); INSTITUTO DE PESQUISA ECONÔMICA APLICADA (IPEA). Atlas desenvolvimento Disponível humano no Brasil. 2020. <a href="http://www.atlasbrasil.org.br/consulta/planilha">http://www.atlasbrasil.org.br/consulta/planilha</a>. Acesso em: 15 mar. 2020.

SANTA CATARINA. Decreto nº 365, de 10 de setembro de 2015. Regulamenta a Lei nº 14.652, de 2009, que institui a avaliação integrada da bacia hidrográfica para fins de estabelece licenciamento ambiental е outras providências. Disponível <a href="http://server03.pge.sc.gov.br/LegislacaoEstadual/2015/000365-005-0-2015-006.htm">http://server03.pge.sc.gov.br/LegislacaoEstadual/2015/000365-005-0-2015-006.htm</a>>. Acesso em: 13 jun. 2021.

SANTA CATARINA. Lei nº 14.652, de 13 de janeiro de 2009. Institui a avaliação integrada da bacia hidrográfica para fins de licenciamento ambiental e estabelece outras providências. Disponível em: <a href="http://leis.alesc.sc.gov.br/html/2009/14652">http://leis.alesc.sc.gov.br/html/2009/14652</a> 2009 Lei promulgada.html>. Acesso em: 13 jun. 2021.

SANTA CATARINA. Lei nº 16.344, de 21 de janeiro de 2014. Altera a Lei .nº 14.652, de 2009, que institui a avaliação integrada da bacia hidrográfica para fins de licenciamento ambiental. e parte promulgada pela Assembleia Legislativa da referida Lei. Disponível em: <a href="http://leis.alesc.sc.gov.br/html/2014/16344\_2014\_Lei.html">http://leis.alesc.sc.gov.br/html/2014/16344\_2014\_Lei.html</a>. Acesso em: 13 jun. 2021.

SANTA CATARINA. Lei nº 17.451, de 10 de janeiro de 2018. Altera o art. 2º da Lei nº 14.652, de 2009, que institui a avaliação integrada da bacia hidrográfica para fins de licenciamento ambiental estabelece outras providências. <a href="http://leis.alesc.sc.gov.br/html/2018/17451\_2018\_lei.html">http://leis.alesc.sc.gov.br/html/2018/17451\_2018\_lei.html</a>. Acesso em: 13 jun. 2021.

SANTA CATARINA. Secretaria de Estado da Agricultura e da Pesca. Censo Agro: Santa Catarina amplia área destinada à produção agropecuária. 2018. Disponível em: <a href="https://www.sc.gov.br/noticias/temas/agricultura-e-pesca/censo-agro-santa-catarina-amplia-">https://www.sc.gov.br/noticias/temas/agricultura-e-pesca/censo-agro-santa-catarina-amplia-</a> area-destinada-a-producao-agropecuaria>. Acesso em: 15 out. 2021.

SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Cadastro de Usuários de Água do Estado de Santa Catarina. 2021a. Disponível em: <a href="http://www.cadastro.aguas.sc.gov.br/sirhsc/conteudo\_visualizar\_dinamico.jsp?idEmpresa="http://www.cadastro.aguas.sc.gov.br/sirhsc/conteudo\_visualizar\_dinamico.jsp?idEmpresa="http://www.cadastro.aguas.sc.gov.br/sirhsc/conteudo\_visualizar\_dinamico.jsp?idEmpresa="http://www.cadastro.aguas.sc.gov.br/sirhsc/conteudo\_visualizar\_dinamico.jsp?idEmpresa="http://www.cadastro.aguas.sc.gov.br/sirhsc/conteudo\_visualizar\_dinamico.jsp?idEmpresa="http://www.cadastro.aguas.sc.gov.br/sirhsc/conteudo\_visualizar\_dinamico.jsp?idEmpresa="http://www.cadastro.aguas.sc.gov.br/sirhsc/conteudo\_visualizar\_dinamico.jsp?idEmpresa="http://www.cadastro.aguas.sc.gov.br/sirhsc/conteudo\_visualizar\_dinamico.jsp?idEmpresa="http://www.cadastro.aguas.sc.gov.br/sirhsc/conteudo\_visualizar\_dinamico.jsp?idEmpresa="http://www.cadastro.aguas.sc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/sirhsc.gov.br/ 59&idMenu=864>. Acesso em: 27 jul. 2021.

SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Panorama dos Recursos Hídricos em Santa Catarina. Florianópolis, 2006. 315p.







SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Plano Estadual de Recursos Hídricos de Santa Catarina (PERH/SC): Diagnóstico da situação atual dos recursos hídricos de Santa Catarina. 2017.

SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Plano Municipal de Saneamento Básico de Anita Garibaldi: volume I. 2011a. Disponível <a href="https://cisama.sc.gov.br/assets/uploads/c71b0-pmsb-anita-garibaldi-volume-i.pdf">https://cisama.sc.gov.br/assets/uploads/c71b0-pmsb-anita-garibaldi-volume-i.pdf</a>. Acesso em: 02 ago. 2021.

SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Plano Municipal de Saneamento Básico de Bocaina do Sul: volume I. 2011b. Disponível em: <a href="https://cisama.sc.gov.br/assets/uploads/26238-pmsb-bocaina-do-sul.pdf">https://cisama.sc.gov.br/assets/uploads/26238-pmsb-bocaina-do-sul.pdf</a>. Acesso em: 02 ago. 2021.

SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Plano Municipal de Saneamento Básico de Bom Retiro: volume I. 2011c. Disponível em: <a href="https://cisama.sc.gov.br/assets/uploads/57a52-pmsb-bom-retiro.pdf">https://cisama.sc.gov.br/assets/uploads/57a52-pmsb-bom-retiro.pdf</a>>. Acesso em: 02 ago. 2021.

SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Plano Municipal de Saneamento Básico de Brunópolis: volume IV. 2011d. Disponível em: <a href="https://static.fecam.net.br/uploads/308/arquivos/2120182\_Volume\_IV\_Brunopolis.pdf">https://static.fecam.net.br/uploads/308/arquivos/2120182\_Volume\_IV\_Brunopolis.pdf</a>. Acesso em: 02 ago. 2021.

SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Plano Municipal de Saneamento Básico de Cerro Negro: volume I. 2011e. Disponível em: <a href="https://cisama.sc.gov.br/assets/uploads/61085-cerro-negro-5-versao-final-volume-i.pdf">https://cisama.sc.gov.br/assets/uploads/61085-cerro-negro-5-versao-final-volume-i.pdf</a>. Acesso em: 02 ago. 2021.

SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Plano Municipal de Saneamento Básico de Palmeira: volume I. 2011f. Disponível em: <a href="https://cisama.sc.gov.br/assets/uploads/496dd-pmsb-palmeira.pdf">https://cisama.sc.gov.br/assets/uploads/496dd-pmsb-palmeira.pdf</a>. Acesso em: 02 ago. 2021.

SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Plano Municipal de Saneamento Básico de Ponte Alta: volume I. 2011g. Disponível em: <a href="https://cisama.sc.gov.br/assets/uploads/de71f-ponte-alta-5-versao-final-volume-i.pdf">https://cisama.sc.gov.br/assets/uploads/de71f-ponte-alta-5-versao-final-volume-i.pdf</a>. Acesso em: 02 ago. 2021.

SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Plano Municipal de Saneamento Básico de Rio Rufino: volume I. 2011h. Disponível em: <a href="https://cisama.sc.gov.br/assets/uploads/523ce-pmsb-rio-rufino.pdf">https://cisama.sc.gov.br/assets/uploads/523ce-pmsb-rio-rufino.pdf</a>. Acesso em: 02 ago. 2021.

SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Plano Municipal de Saneamento Básico de São José do Cerrito: volume I. 2011i. cerrito.pdf>. Acesso em: 02 ago. 2021.

SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Plano Municipal de Saneamento Básico de Urubici: volume I. 2011j. Disponível em: <a href="https://cisama.sc.gov.br/assets/uploads/237ca-pmsb-urubici.pdf">https://cisama.sc.gov.br/assets/uploads/237ca-pmsb-urubici.pdf</a>>. Acesso em: 02 ago. 2021.

SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL (SDE). Sistema de Informações de Recursos Hídricos do Estado de Santa Catarina (SIRHESC). Portarias Autorizativas 2020. 2021b. Disponível em: <a href="https://www.aguas.sc.gov.br/base-">https://www.aguas.sc.gov.br/base-</a>







documental/documentos?jsmallfib=1&dir=JSROOT/Diretoria%20de%20Recursos%20Hidrico s/Outorga/Portarias/Outorga%20de%20Direito%20de%20Uso/Portarias%20Autorizativas\_20 20>. Acesso em: 29 jul. 2021.

URUBICI. Prefeitura Municipal de Urubici. Portal Municipal de Turismo de Urubici. 2021. Disponível em: <a href="https://turismo.urubici.sc.gov.br/o-que-fazer">https://turismo.urubici.sc.gov.br/o-que-fazer</a>>. Acesso em: 08 out. 2021.

U.S. ARMY CORPS OF ENGINEERS. Hydrologic Enginering Center - River Analysis System - HEC-RAS 5.0.7. Washington, D.C., 2019.







### 11 ANEXOS







## Anexo 1 - E-mail SDE

#### **Leonardo Gomes**

**De:** Leonardo Gomes

**Enviado em:** segunda-feira, 21 de junho de 2021 10:19

Para: Enaldo Ribeiro Santos

**Assunto:** RES: Dúvidas cadastro de usuários de recursos ...

Prezado, Enaldo.

Agradeço a cordialidade e esclarecimentos prestados. Nos foram muito úteis.

Atenciosamente,

Leonardo.

### Leonardo Gomes | Analista Ambiental



AV. CARANDAÍ, 288, SALA 201 FUNCIONÁRIOS - CEP 30.130-060 BELO HORIZONTE - MG TEL.: +55 (31) 3227-5722

De: Enaldo Ribeiro Santos <enaldo@sde.sc.gov.br>
Enviada em: terça-feira, 15 de junho de 2021 19:08
Para: Leonardo Gomes <leonardo.gomes@azurit.com.br>
Assunto: Re: RES: Dúvidas cadastro de usuários de recursos ...

Boa noite,

Prezado, a princípio informo que o Rio Canoas é de domínio Federal, e toda e qualquer captação em seu leito só pode ser outorgado pela ANA, se por acaso saiu alguma captação outorgado pela SDE, ouve equívoco de algum analista.

Respondendo seus questionamentos: Talvez os dados de vazões outorgadas, estejam em algum outro banco de dados, que não seja da SDE.

- 1 Este cadastro é uma etapa anterior à outorga, correto? No banco de dados constam usos insignificantes, usos a serem outorgados e usos já outorgados? Correto, o cadastro é uma etapa anterior ao pedido de outorga, e constam todos os usos.
- 2 Verifiquei vários cadastros no rio Canoas (Federal), nestes casos, os cadastros são enviados para a ANA avaliar a concessão da outorga? Notei que existem cadastros coincidentes com algumas outorgas da ANA no rio Canoas (Principalmente para uso industrial (Klabin)), devo, portanto, desconsiderar estes cadastros na minha avaliação para evitar a superestimativa da demanda? **Neste caso, é aconselhável desconsiderar, pois a competência é da ANA.**

3 - Para processos novas outorga, vocês usam esses cadastros para estimativa da demanda hídrica? - Sim, é usado sim, para efeito do balanço hídrico na bacia.

Espero que tenha ajudado,

para outras informações você pode consultar nossos colegas Vinícius ou Andréa: andreamgaropaba@gmail.com ou vinicius@sde.sc.gov.br

#### **Enaldo Ribeiro Santos**

Geólogo

Diretoria de Recursos Hídricos e Saneamento Secretaria Executiva de Meio Ambiente Secretaria de Estado do Des. Econômico Sustentável

Fone: (48) 3665-4207

Em 15/06/21 12:09, Leonardo Gomes < <a href="mailto:leonardo.gomes@azurit.com.br">leonardo.gomes@azurit.com.br</a>> escreveu:

Apenas corrigindo, foi a Fabiana da Statkraft, não Fabiano, quem me passou o seu contato.

Desculpe o engano.

#### Leonardo Gomes | Analista Ambiental



AV. CARANDAÍ, 288, SALA 201 FUNCIONÁRIOS - CEP 30.130-060 BELO HORIZONTE - MG TEL.: +55 (31) 3227-5722

**De:** Leonardo Gomes < <u>leonardo.gomes@azurit.com.br</u>> **Enviada em:** terça-feira, 15 de junho de 2021 11:10

Para: enaldo@sde.sc.gov.br

Cc: Joana Cruz < joana.cruz@azurit.com.br>; Rayssa Barbosa < rayssa.barbosa@azurit.com.br>; Matheus Gomes

Pereira de Souza <matheus.gomes@azurit.com.br>; Luciano Cota <luciano.cota@azurit.com.br>

Assunto: Dúvidas cadastro de usuários de recursos hídricos.

Prezado Enaldo, bom dia. Espero encontrá-lo bem.

Meu nome é Leonardo, trabalho na Azurit Engenharia de Belo Horizonte, somos contratados da Statkraft para elaborar a Avaliação Ambiental Integrada do rio Canoas. Quem me passou seu e-mail foi o Fabiano (trabalha na Statkraft) que teve contato com você em um processo de outorga deles.

Estamos elaborando o capítulo de Usos da Água para AAI do rio Canos e surgiram algumas dúvidas em relação aos dados que estamos utilizando. Acredito, caso ache viável, que você possa nos ajudar.

Primeiro, tivemos acesso à lista de outorgas estaduais pelo site da SDE, mas que está sem os dados de vazão. Queria confirmar se, realmente, a informação de vazão outorgada não está disponível?

Alternativamente, nos foi encaminhado um banco de dados de cadastros de usuários de recursos hídricos (CEURH). Sobre esses dados, seguem as dúvidas:

- 1 Este cadastro é uma etapa anterior à outorga, correto? No banco de dados constam usos insignificantes, usos a serem outorgados e usos já outorgados?
- 2 Verifiquei vários cadastros no rio Canoas (Federal), nestes casos, os cadastros são enviados para a ANA avaliar a concessão da outorga? Notei que existem cadastros coincidentes com algumas outorgas da ANA no rio Canoas (Principalmente para uso industrial (Klabin)), devo, portanto, desconsiderar estes cadastros na minha avaliação para evitar a superestimativa da demanda?
- 3 Para processos novas outorga, vocês usam esses cadastros para estimativa da demanda hídrica?

Desde já, agradeço a ajuda.

Atenciosamente,

Leonardo.

**Leonardo Gomes | Analista Ambiental** 



AV. CARANDAÍ, 288, SALA 201 FUNCIONÁRIOS - CEP 30.130-060 BELO HORIZONTE - MG TEL.: +55 (31) 3227-5722







## Anexo 2 - Modelagem



# STATKRAFT - ENERGIAS RENOVÁVEIS S.A.

# RIO CANOAS — SANTA CATARINA

# Propagação de Cheias e da Qualidade da Água

| OD | REVISÃO GERAL DO TEXTO                 | C.R.V.     | D.J.S.    | 05/08/2021 |
|----|----------------------------------------|------------|-----------|------------|
| 0C | REVISÃO GERAL DO TEXTO                 | C.R.V.     | D.J.S.    | 28/07/2021 |
| ОВ | INCLUSÃO DE COMENTÁRIOS E COMPLEMENTOS | C.R.V.     | D.J.S.    | 15/07/2021 |
| 0A | EMISSÃO INICIAL DO DOCUMENTO           | C.R.V.     | D.J.S.    | 30/06/2021 |
| Nº | Revisão                                | ELABORAÇÃO | Aprovação | DATA       |

TÍTULO:

# MODELAGEM HIDRODINAMICA E DE QUALIDADE DA ÁGUA

|                   |                                   | ÁREA:       | Hidráulica              | Situação                 |
|-------------------|-----------------------------------|-------------|-------------------------|--------------------------|
| PRUME<br>projetos | PR <sub>(</sub> I <sub>5</sub> ME | ELABORAÇÃO: | H.J.T.                  | APROVADO                 |
|                   | VERIFICAÇÃO:                      | C.R.V.      | APROVADO COM RESTRIÇÕES |                          |
|                   |                                   | APROVAÇÃO:  | D.J.S.                  | DEVOLVIDO PARA CORREÇÕES |

| RESPONSÁVEL TÉCNICO:       | CREA       | UF |
|----------------------------|------------|----|
| Humberto Jacobsen Teixeira | 0600376792 | SP |
| GERENTE DE CONTRATO:       | CREA       | UF |
| Danilo Jorge Santos        | 10.195/D   | DF |

| NÚMERO DO DOCUMENTO: | REVISÃO: | EMISSÃO INICIAL: |
|----------------------|----------|------------------|
| PR280-GL-42-RT-0011  | 0D       | 05/08/2021       |



### ÍNDICE

| 1. | INTR  | ODUÇÃO                                                           | 1   |
|----|-------|------------------------------------------------------------------|-----|
| 2. | REGI  | ão dos Estudos                                                   | 6   |
| 3. | Con   | CEITUAÇÃO DOS MÓDULOS DA MODELAGEM MATEMÁTICA                    | 7   |
|    | 3.1.  | Modelagem Matemática Hidrodinâmica                               |     |
|    | 3.2.  | Modelagem Matemática da Qualidade da Água                        | 8   |
| 4. | PREP  | PARAÇÃO DA BASE DE DADOS DE ENTRADA                              | 9   |
|    | 4.1.  | Definição do Esquema Topológico da Modelagem Matemática          | 9   |
|    | 4.2.  | Hidrogramas de Cheias de Projeto                                 | 15  |
|    | 4.2.1 | L. Dados Básicos                                                 | 15  |
|    | 4.2.2 | 2. Cálculo das Cheias de Projeto                                 | 18  |
|    | 4.2.3 | B. Hidrogramas de Cheia                                          | 19  |
|    | 4.3.  | Regras Operacionais e Curvas de Descarga dos Vertedores          | 22  |
|    | 4.3.1 | L. PCH Ado Popinhak                                              | 22  |
|    | 4.3.2 | PCH Pery                                                         | 23  |
|    | 4.3.3 | PCH Canoas                                                       | 24  |
|    | 4.3.4 | l. UHE São Roque                                                 | 25  |
|    | 4.3.5 | 5. UHE Garibaldi                                                 | 26  |
|    | 4.3.6 | 5. UHE Campos Novos                                              | 27  |
| 5. | Prof  | PAGAÇÃO DE CHEIAS                                                | 28  |
|    | 5.1.  | Simulação do Cenário Atual                                       | 28  |
|    | 5.1.1 | L. Análise para a Vazão Média de Longo Termo                     | 28  |
|    | 5.1.2 |                                                                  |     |
|    | 5.1.3 | 3. Análise para a Cheia Milenar – Cenário Atual                  | 37  |
|    | 5.2.  | Simulação de Curto Prazo                                         | 42  |
|    | 5.2.1 | L. Análise para a Vazão Média de Longo Termo (QMLT)              | 42  |
|    | 5.2.2 | 2. Análise para a Cheia Centenária                               | 46  |
|    | 5.2.3 | 3. Análise para a Cheia Milenar – Cenário de Curto Prazo         | 51  |
|    | 5.3.  | Simulação do Cenário de Médio Prazo - 2030                       | 55  |
|    | 5.3.1 | L. Análise para a Vazão Média de Longo Termo (Q <sub>MLT</sub> ) | 55  |
|    | 5.3.2 | 2. Análise para a Cheia Centenária – Cenário de Médio Prazo      | 59  |
|    | 5.3.3 | 3. Análise para a Cheia Milenar                                  | 64  |
|    | 5.4.  | Simulação do Cenário de Longo Prazo – 2040                       | 69  |
|    | 5.5.  | Análise Comparativa entre as Condições Com e Sem a PCH Canoas    | 69  |
| 6. | Мог   | DELAGEM DE QUALIDADE DA ÁGUA                                     | 70  |
|    | 6.1.  | Dados de Entrada para a Modelagem Matemática                     | 70  |
|    | 6.1.1 |                                                                  |     |
|    | 6.2.  | Análise do Comportamento da Cascata de Empreendimentos           |     |
|    | 6.3.  | Apresentação dos Resultados da Modelagem Matemática              |     |
|    | 6.3.1 |                                                                  |     |
|    | 0.5.1 |                                                                  | / ¬ |

### **RIO CANOAS / SC** PROPAGAÇÃO DAS CHEIAS E DA QUALIDADE DA ÁGUA



| Q  | LUSTRAC | ÕFS                                             | 22 |
|----|---------|-------------------------------------------------|----|
| 7. | Conclus | ÕES                                             | 87 |
|    | 6.3.3.  | Condição: Vazão de Seca (50%-Q <sub>98%</sub> ) | 82 |
|    | 6.3.2.  | Condição: Vazão de Cheia Milenar                | 78 |
|    |         |                                                 |    |





# ÍNDICE DE TABELAS

| Tabela 1-1: Rio Canoas – Aproveitamentos Hidrelétricos: Características principais | 1  |
|------------------------------------------------------------------------------------|----|
| Tabela 4-1: Posicionamento Relativo das Seções Topobatimétricas                    | 13 |
| Tabela 4-2: Estações Fluviométricas Selecionadas                                   | 16 |
| Tabela 4-3: Período e Natureza dos Dados Disponíveis em Cada Estação Fluviométrica | 16 |
| Tabela 4-4: Vazão Médias Mensais – Estação: Passo Caru                             | 17 |
| Tabela 4-5: Hidrograma Unitário Curvilíeno Admensional – SCS                       | 20 |
| Tabela 4-6: Hidrogramas de Vazões nos Pontos de Amostragem 1/3                     | 20 |
| Tabela 4-7: Hidrogramas de Vazões nos Pontos de Amostragem 2/3                     | 21 |
| Tabela 4-8: Hidrogramas de Vazões nos Pontos de Amostragem 3/3                     | 21 |
| Tabela 4-9: Hidrogramas de Vazões nos Eixos dos Aproveitamentos                    | 22 |
| Tabela 4-10: PCH Ado Popinhak – Curva de Descarga dos Vertedouros de Superfície    | 22 |
| Tabela 4-11: PCH Pery – Curva de descarga do vertedouro                            | 23 |
| Tabela 4-12: PCH Canoas – Curva de descarga dos vertedouros                        | 24 |
| Tabela 4-13: UHE São Roque – Curva de descarga do vertedouro                       | 25 |
| Tabela 4-14: UHE Garibaldi – Curva de descarga do vertedouro                       | 26 |
| Tabela 5-1: Vazão Q <sub>MLT</sub> – Cenário Atual                                 | 29 |
| Tabela 5-2: Vazão Q <sub>100</sub> — Cenário Atual                                 | 32 |
| Tabela 5-3: Vazão Q <sub>1.000</sub> – Cenário Atual                               | 38 |
| Tabela 5-4: Vazão Q <sub>MLT</sub> — Cenário Curto Prazo                           | 43 |
| Tabela 5-5: Vazão Q <sub>100</sub> – Cenário Curto Prazo                           | 46 |
| Tabela 5-6: Vazão Q <sub>1000</sub> — Cenário Curto Prazo                          | 51 |
| Tabela 5-7: Vazão Q <sub>MLT</sub> – Cenário Médio Prazo                           | 56 |
| Tabela 5-8: Vazão Q <sub>100</sub> — Cenário Médio Prazo                           | 59 |
| Tabela 5-9: Vazão Q <sub>1000</sub> — Cenário Médio Prazo                          | 65 |
| Tabela 6-1: Dados de Amostragem de Qualidade da Água                               | 71 |
| Tabela 6-2: Dados dos Aproveitamentos Hidrelétricos                                | 73 |
| Tabela 6-3: Vazões Médias de Longo Termo (Q <sub>MLT</sub> )                       | 74 |
| Tabela 6-4: Parâmetros de Qualidade da Água                                        | 74 |
| Tabela 6-5: Vazões de Cheia (Q <sub>1000</sub> )                                   | 79 |
| Tabela 6-6: Parâmetros de Qualidade da Água                                        | 79 |
| Tabela 6-7: Vazões de Seca – 50% de Q <sub>98%</sub>                               | 83 |
| Tabela 6-8: Parâmetros de Qualidade da Água                                        | 83 |





# ÍNDICE DE FIGURAS

| Figura 1-1: Rio Canoas – Aproveitamentos Hidrelétricos: Cenário Atual                   | 2  |
|-----------------------------------------------------------------------------------------|----|
| Figura 1-2: Rio Canoas – Aproveitamentos Hidrelétricos: Cenário de Curto Prazo          | 3  |
| Figura 1-3: Rio Canoas – Aproveitamentos Hidrelétricos: Cenário de Médio Prazo          | 4  |
| Figura 1-4: Rio Canoas – Aproveitamentos Hidrelétricos: Cenário de Longo Prazo          | 5  |
| Figura 3-1: Células de Qualidade de Água e Seções Transversais no HEC-RAS               | 8  |
| Figura 4-1: Rio Canoas – Perfil longitudinal                                            | 9  |
| Figura 4-2: Localização das seções 1/6                                                  | 10 |
| Figura 4-3: Localização das seções 2/6                                                  | 10 |
| Figura 4-4: Localização das seções 3/6                                                  | 11 |
| Figura 4-5: Localização das seções 4/6                                                  | 11 |
| Figura 4-6: Localização das seções 5/6                                                  | 12 |
| Figura 4-7: Localização das seções 6/6                                                  | 12 |
| Figura 4-8: Estações Fluviométricas Selecionadas para os Estudos                        | 16 |
| Figura 4-9: Hidrograma Adimensionalizado pela MLT                                       | 17 |
| Figura 4-10: Vazão Médias Mensais – Estação: Passo Caru                                 | 18 |
| Figura 4-11: Hidrograma Unitário Curvilíneo – Soil Conservation Service                 | 19 |
| Figura 5-1: Perfil da Linha d´água para a Vazão Q <sub>MLT</sub> – Cenário Atual        | 28 |
| Figura 5-2: Perfil da Linha d'água para a Vazão Q <sub>100</sub> — Cenário Atual        | 32 |
| Figura 5-3: Cheias Centenárias: Montante da PCH Ado Popinhak – Cenário Atual            | 33 |
| Figura 5-4: Cheias Centenárias: PCH Ado Popinhak a Seção São Roque — Cenário Atual      | 34 |
| Figura 5-5: Cheias Centenárias: Seção Roque a Seção de Jusante – Cenário Atual          | 34 |
| Figura 5-6: Cheias Centenárias: Hidrogramas nos Eixos dos barramentos – Cenário Atual   | 35 |
| Figura 5-7: Cheia Centenária: PCH Ado Popinhak – Cenário Atual                          | 35 |
| Figura 5-8: Cheia Centenária – PCH Pery – Cenário Atual                                 | 36 |
| Figura 5-9: Cheia Centenária: UHE Garibaldi – Cenário Atual                             | 36 |
| Figura 5-10: Cheia Centenária: UHE Campos Novos – Cenário Atual                         | 37 |
| Figura 5-11: Perfil da Linha d´água para a Vazão Q <sub>1.000</sub> – Cenário Atual     | 37 |
| Figura 5-12: Cheias Milenares: Montante da PCH Ado Popinhak – Cenário Atual             | 39 |
| Figura 5-13: Cheias Milenares: PCH Ado Propinhak a Seção São Roque – Cenário Atual      | 39 |
| Figura 5-14: Cheias Milenares: Seção São Roque a Seção Jusante – Cenário Atual          | 40 |
| Figura 5-15: Cheias Milienares: Hidrogramas nos Eixos dos barramentos – Cenário Atual   | 40 |
| Figura 5-16: Cheia Milenar: PCH Ado Propinhak – Cenário Atual                           | 41 |
| Figura 5-17: Cheia Milenar: PCH Pery – Cenário Atual                                    | 41 |
| Figura 5-18: Cheia Milenar: UHE Garibaldi – Cenário Atual                               | 42 |
| Figura 5-19: Cheia Milenar: UHE Campos Novos – Cenário Atual                            | 42 |
| Figura 5-20: Perfil da Linha d´água para a Vazão Q <sub>MLT</sub> — Cenário Curto Prazo | 43 |
| Figura 5-21: Perfil da Linha d´água para a Vazão Q $_{100}$ — Cenário Curto Prazo       | 46 |
| Figura 5-22: Cheias Centenárias: Montante da PCH Ado Popinhak – Cenário Curto Prazo     | 48 |
|                                                                                         |    |





| Figura 5-23: Cheias Centenárias: PCH Ado Popinhak a UHE São Roque – Cenário Curto Prazo      | 48 |
|----------------------------------------------------------------------------------------------|----|
| Figura 5-24: Cheias Centenárias: UHE São Roque à Seção Jusante – Cenário Curto Prazo         | 48 |
| Figura 5-25: Cheias Centenárias: Hidrogramas nos Eixos dos barramentos – Cenário Curto Prazo | 49 |
| Figura 5-26: Cheia Centenária: PCH Ado Propinhak – Cenário Curto Prazo                       | 49 |
| Figura 5-27: Cheia Centenária: PCH Pery – Cenário Curto Prazo                                | 49 |
| Figura 5-28: Cheia Centenária: UHE São Roque – Cenário Curto Prazo                           | 50 |
| Figura 5-29: Cheia Centenária: UHE Garibaldi – Cenário Curto Prazo                           | 50 |
| Figura 5-30: Cheia Centenária: UHE Campos Novos – Cenário Curto Prazo                        | 50 |
| Figura 5-31: Perfil da Linha d'água para a Vazão Q <sub>1000</sub> — Cenário Curto Prazo     | 51 |
| Figura 5-32: Cheias Milenares: Montante da PCH Ado Popinhak – Cenário Curto Prazo            | 52 |
| Figura 5-33: Cheias Milenares: PCH Ado Popinhak a UHE São Roque — Cenário Curto Prazo        | 53 |
| Figura 5-34: Cheias Milenares: UHE São Roque a Seção Jusante – Cenário Curto Prazo           | 53 |
| Figura 5-35: Cheias Milenares: Hidrogramas nos Eixos dos barramentos – Cenário Curto Prazo   | 53 |
| Figura 5-36: Cheia Milenar: PCH Ado Propinhak – Cenário Curto Prazo                          | 54 |
| Figura 5-37: Cheia Milenar: PCH Pery – Cenário Curto Prazo                                   | 54 |
| Figura 5-38: Cheia Milenar: UHE São Roque – Cenário Curto Prazo                              | 54 |
| Figura 5-39: Cheia Milenar: UHE Garibaldi – Cenário Curto Prazo                              | 55 |
| Figura 5-40: Cheia Milenar: UHE Campos Novos – Cenário Curto Prazo                           | 55 |
| Figura 5-41: Perfil da Linha d'água para a Vazão Q <sub>MLT</sub> – Cenário Médio Prazo      | 56 |
| Figura 5-42: Perfil da Linha d'água para a Vazão Q <sub>100</sub> – Cenário Médio Prazo      | 59 |
| Figura 5-43: Cheias Centenárias: A montante da PCH Ado Propinhak – Cenário Médio Prazo       | 61 |
| Figura 5-44: Cheias Centenárias: PCH Ado Propinhak a UHE São Roque – Cenário Médio Prazo     | 61 |
| Figura 5-45: Cheias Centenárias: UHE São Roque a Seção Jusante – Cenário MédioPrazo          | 61 |
| Figura 5-46: Cheias Centenárias: Hidrogramas nos Eixos dos barramentos – Cenário Médio Prazo | 62 |
| Figura 5-47: Cheia Centenária: PCH Ado Propinhak – Cenário Médio Prazo                       | 62 |
| Figura 5-48: Cheia Centenária: PCH Pery – Cenário Médio Prazo                                | 62 |
| Figura 5-49: Cheia Centenária: PCH Canoas – Cenário Médio Prazo                              | 63 |
| Figura 5-50: Cheia Centenária: UHE São Roque – Cenário Médio Prazo                           | 63 |
| Figura 5-51: Cheia Centenária: UHE Garibaldi – Cenário Médio Prazo                           | 63 |
| Figura 5-52: Cheia Centenária: UHE Campos Novos – Cenário Médio Prazo                        | 64 |
| Figura 5-53: Perfil da Linha d'água para a Vazão Q <sub>1000</sub> — Cenário Médio Prazo     | 64 |
| Figura 5-54: Cheias Milenares: A montante da PCH Ado Propinhak – Cenário Médio Prazo         | 66 |
| Figura 5-55: Cheias Milenares: PCH Ado Propinhak a UHE São Roque – Cenário Médio Prazo       | 66 |
| Figura 5-56: Cheias Milenares: UHE São Roque a Seção Jusante – Cenário Médio Prazo           | 66 |
| Figura 5-57: Cheias Milenares: Hidrogramas nos Eixos dos barramentos – Cenário Médio Prazo   | 67 |
| Figura 5-58: Cheia Milenar: PCH Ado Propinhak – Cenário Médio Prazo                          | 67 |
| Figura 5-59: Cheia Milenar: PCH Pery – Cenário Médio Prazo                                   | 67 |
| Figura 5-60: Cheia Milenar: PCH Canoas – Cenário Médio Prazo                                 | 68 |
| Figura 5-61: Cheia Milenar: UHE São Roque – Cenário Médio Prazo                              | 68 |
| Figura 5-62: Cheia Milenar: UHE Garibaldi – Cenário Médio Prazo                              | 68 |
| Figura 5-63: Cheia Milenar: UHE Campos Novos – Cenário Médio Prazo                           | 69 |
|                                                                                              |    |



| Figura 6-1: Pontos de Amostragens de Qualidade da Água                   | . 70 |
|--------------------------------------------------------------------------|------|
| Figura 6-2: Concentração de Algas (CL_a) — Vazão Q <sub>MLT</sub>        | 76   |
| Figura 6-3: Concentração de Oxigênio Dissolvido — Vazão Q <sub>MLT</sub> | 76   |
| Figura 6-4: Concentração da DBO — Vazão Q <sub>MLT</sub>                 | . 77 |
| Figura 6-5: Concentração de Nitrato — Vazão Q <sub>MLT</sub>             | . 77 |
| Figura 6-6: Concentração de Amônia – Vazão Q <sub>MLT</sub>              | 78   |
| Figura 6-7: Concentração de Fósforo Orgânico — Vazão Q <sub>MLT</sub>    | 78   |
| Figura 6-8: Concentração de Algas (CL_a) — Cheia Milena                  | 80   |
| Figura 6-9: Concentração de Oxigênio Dissolvido — Cheia Milenar          | 80   |
| Figura 6-10: Concentração da DBO — Cheia Milenar                         | 81   |
| Figura 6-11: Concentração de Nitrato — Cheia Milenar                     | 81   |
| Figura 6-12: Concentração de Amônia — Cheia Milenar                      | 82   |
| Figura 6-13: Concentração de Fósforo Orgânico — Cheia Milenar            | 82   |
| Figura 6-14: Concentração de Algas (CL_a) — Vazão de Seca                | 84   |
| Figura 6-15: Concentração de Oxigênio Dissolvido — Vazão de Seca         | 84   |
| Figura 6-16: Concentração da DBO — Vazão de Seca                         | 85   |
| Figura 6-17: Concentração de Nitrato — Vazão de Seca                     | 85   |
| Figura 6-18: Concentração de Amônia — Vazão de Seca                      | 86   |
| Figura 6-19: Concentração de Fósforo Orgânico — Vazão de Seca            | . 86 |





### 1. Introdução

Neste documento são apresentados os resultados dos estudos de modelagem hidrodinâmica e de qualidade da água do rio Canoas, considerando o percurso álveo desde a região de cabeceiras até sua foz no rio Uruguai.

No contexto deste estudo integram também o conjunto de seis barramentos inseridos ou a serem inseridos neste curso d'água que foram modelados com o propósito de avaliar a propagação das ondas de cheias e comportamento da qualidade da água.

As propagações das ondas de cheias de projeto foram aferidas para a vazão média de longo termo (QMLT) e para as cheias com recorrências de 100 anos e 1.000 anos.

A cascata de empreendimentos considerada no curso do rio Canoas é representada pelos seguintes empreendimentos: UHE Campos Novos, UHE Garibaldi, UHE São Roque, PCH Canoas, PCH Pery e PCH Ado Popinhak. Na Tabela 1-1 apresentam-se as principais características destes aproveitamentos.

Tabela 1-1: Rio Canoas – Aproveitamentos Hidrelétricos: Características principais.

|                   | RESERV                    | ATÓRIO                   |                           | QUEDA BRUTA |                             |                            |                      |
|-------------------|---------------------------|--------------------------|---------------------------|-------------|-----------------------------|----------------------------|----------------------|
| APROVEITAMENTO    | NA <sub>MÁX MÁX</sub> (m) | NA <sub>NORMAL</sub> (m) | NA <sub>JUSANTE</sub> (m) | (m)         | P <sub>INSTALADA</sub> (MW) | TIPO DE VERTEDOURO         | OBSERVAÇÕES          |
| UHE CAMPOS NOVOS  | 665.0                     | 660.0                    | 480.0                     | 180.0       | 880.0                       | controlado                 | em operação          |
| UHE GARIBALDI     | 712.4                     | 705.0                    | 660.7                     | 44.3        | 192.0                       | soleira livre              | em operação          |
| UHE SÃO ROQUE     | 765.9                     | 760.0                    | 706.3                     | 53.7        | 142.0                       | soleira livre              | em construção        |
| PCH CANOAS        | 783.9                     | 780.0                    | 760.3                     | 19.7        | 30.0                        | soleira livre + controlado | projeto em andamento |
| PCH PERY          | 801.6                     | 798.4                    | 780.0                     | 18.4        | 30.0                        | soleira livre              | em operação          |
| PCH ADO PROPINHAK | 821.3                     | 817.0                    | 803.8                     | 13.3        | 22.6                        | soleira livre+controlado   | em operação          |

A partir deste arranjo, as simulações consideram temporalmente três cenários de composições de obras hidráulicas:





• Cenário Atual: Considera os empreendimentos em operação: UHE Campos Novos, UHE Garibaldi, PCH Pery e PCH Ado Popinhak;

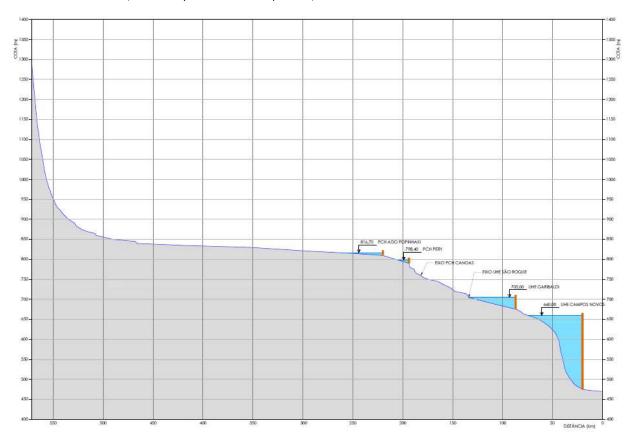



Figura 1-1: Rio Canoas – Aproveitamentos Hidrelétricos: Cenário Atual



• Cenário de Curto Prazo: Inclui a UHE São Roque, cujo início de operação pode ocorrer até o ano de 2022;

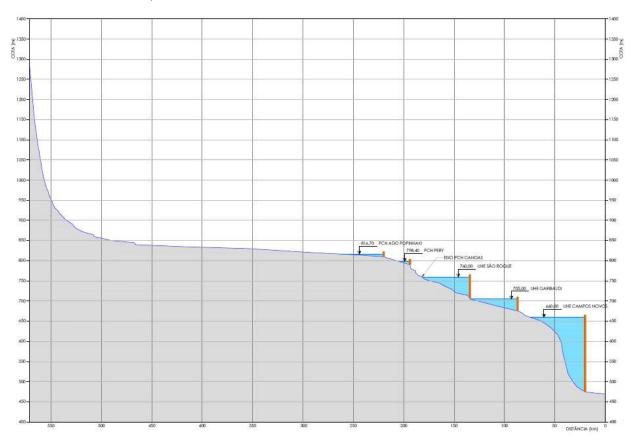



Figura 1-2: Rio Canoas – Aproveitamentos Hidrelétricos: Cenário de Curto Prazo



• Cenário de Médio Prazo 2030: Inclui a PCH Canoas, compondo a cascata completa formada pelos seis aproveitamentos;

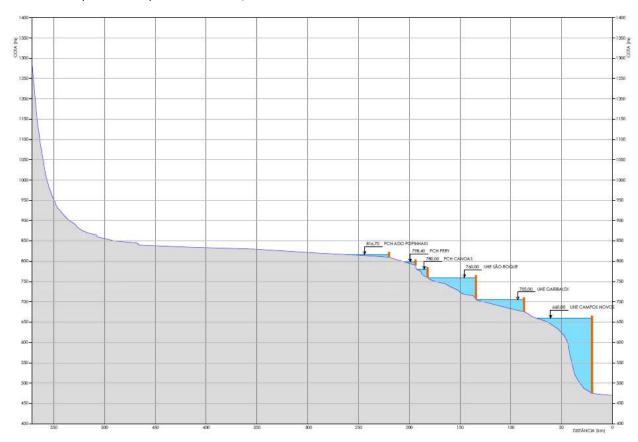



Figura 1-3: Rio Canoas – Aproveitamentos Hidrelétricos: Cenário de Médio Prazo



• Cenário de Longo Prazo 2040: idêntico ao Cenário de Médio Prazo.

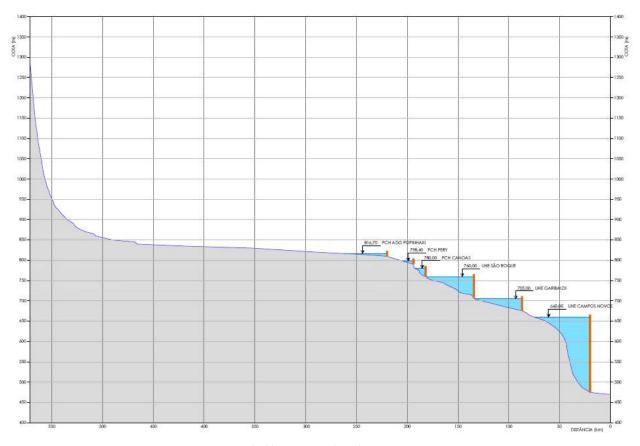



Figura 1-4: Rio Canoas – Aproveitamentos Hidrelétricos: Cenário de Longo Prazo

Para os estudos de modelagem de qualidade da água foram adotados os mesmos cenários de arranjos de obras hidráulicas, onde o comportamento liminológico foi avaliado para três condições de vazões afluentes:

- Vazão de seca: correspondente a 50% da vazão Q<sub>98%</sub>;
- Vazão média de longo termo (Q<sub>MLT</sub>) e
- Vazão associada a onda de cheia milenar (Q<sub>1.000</sub>)

As análises foram fundamentadas na aplicação de técnicas de modelagem matemática, com a utilização do modelo HEC-RAS - versão 5.0.7, concebido pelo "U.S. Army Corps of Engineers" dos Estados Unidos.



### 2. REGIÃO DOS ESTUDOS

O rio Canoas é um curso de água inserido totalmente no estado de Santa Catarina, apresentando bacia de drenagem de  $15.012~\rm km^2$ 

Tem suas nascentes localizadas entre a serra da Anta Gorda e a serra da Boa Vista, na formação Serra Geral, próximo ao município de Urubici (SC), em uma altitude de 1.600 m e tem seu curso desenvolvendo para oeste, apresentando um percurso de 570 km até seu desague no rio Pelotas, onde aquele curso d'agua passa a se denominar rio Uruguai. Dentre seus afluentes principais, citam-se rio Caveiras, Marombas, João Paulo, Inferno Grande e Santa Cruz.

Segundo a divisão do território nacional em bacias hidrográficas, adotada pela Agência Nacional de Águas – ANA, o rio Canoas está inserido na Sub-Bacia 71, integrante da Bacia 7 – Bacia do Rio Uruguai.

As principais fontes poluidoras da bacia são derivadas dos efluentes tóxicos da indústria de papel e celulose, efluentes orgânicos e tóxicos das concentrações urbanas e industriais e agrotóxicos das lavouras anuais e de fruticultura.





### 3. CONCEITUAÇÃO DOS MÓDULOS DA MODELAGEM MATEMÁTICA

Os estudos de modelagem hidrodinâmica foram baseados no aplicativo HEC-RAS (Hydrologic Engineering Center - River Analysis System) - versão 5.0.7 (março de 2019), concebido pelo "U.S. Army Corps of Engineers".

Trata-se de um modelo aplicado à simulação de perfis de linha de água em rios e reservatórios, permitindo realizar modelagens unidimensionais em regimes de escoamento permanente e não permanente, transporte de sedimentos e fundo móvel e qualidade da água.

O HEC-RAS é composto de 4 componentes para análises de rios unidimensionais:

- Regime de escoamento permanente;
- Regime de escoamento não permanente;
- Transporte de Sedimentos;
- Qualidade da água.

### 3.1. Modelagem Matemática Hidrodinâmica

A modelagem hidrodinâmica foi feita para verificar a propagação das ondas de cheias de projeto associadas a vazão média de longo termo ( $Q_{MLT}$ ) e recorrências de 100 e 1.000 anos ( $Q_{1000}$ ;  $Q_{1.000}$ ), ao longo de todo o percurso do rio Canoas, considerando-se os cenários previstos para o aproveitamento hidrelétrico da bacia.

Na formulação do modelo matemático, o sistema a ser simulado é representado pelo percurso do álveo natural do rio Canoas desde próximo as suas cabeceiras até sua foz no rio Uruguai, e pelas estruturas hidráulicas de seis barramento interpostas em seu curso, onde são veiculadas as ondas de cheias de projeto.

A estrutura da barragem é representada pelas características física e hidráulica das estruturas vertentes caracterizadas através das respectivas curvas cota-descarga.

O curso d'água foi modelado por meio de uma sequência de seções topobatimétricas que representam as alterações morfológicas do álveo e das áreas laterais de inundação.

Nos segmentos de rio, sem influência dos reservatórios, o modelo determina, em cada seção, dados temporais de vazão, velocidade de escoamento e cotas de níveis d'água determinando a superfície da linha do escoamento em regime gradualmente variado.

A formulação do modelo é baseada na solução da equação unidimensional da energia e perdas de carga, aferidas por meio do coeficiente de Manning, cujo parâmetro é definido para cada seção considerada na modelagem matemática.

No escoamento não permanente, a formulação do programa é representada por um esquema implícito de diferenças finitas, associadas às equações completas de Saint-Venant, traduzidas por equações diferenciais da conservação da massa e da quantidade de movimento.

Para a execução de uma modelagem hidráulica é necessário que a calha de escoamento seja caracterizada geometricamente por uma sequência de seções topobatimétricas moldadas numericamente por relação distância-cota onde são definidos os valores dos coeficientes de Manning.

No processo de simulação considerou-se o escoamento com fluxo de vazão variável ao longo do tempo, caracterizados por hidrogramas de cheias de projeto, aportados na porção mais a montante do rio Canoas, e afluências laterais distribuídos ao longo de todo o seu percurso até sua foz no Rio Uruguai.





Uma vez que a vazão média de longo termo ( $Q_{MLT}$ ), não se caracteriza como uma onda de cheia, os estudos de propagação de cheias foram desenvolvidos apenas para as vazões centenária e milenar ( $Q_{1.000}$ ).

Para as vazões médias de longo termo ( $Q_{MLT}$ ) e afluência associada a 50% da vazão  $Q_{98\%}$ , adotadas nos estudos de modelagem de qualidade da água, considerou-se regime de afluência permanente.

### 3.2. Modelagem Matemática da Qualidade da Água

O módulo de simulação de qualidade da água utiliza o esquema numérico explicito "QUICKEST-ULTIMATE", proposto por "Leonard, 1979 e 1991", na solução dos processos advectivos e difusivos do escoamento unidimensional.

O modelo simula os processos relacionados de transformação e o transporte dos parâmetros físicos e bioquímicos da qualidade da água, considerando a temperatura, constituintes conservativos e não conservativos, a série do nitrogênio dissolvido (NO<sub>3</sub>-N, NO<sub>2</sub>-N, NH<sub>4</sub>-N e Org-N), fósforo dissolvido (PO<sub>4</sub>-P, Org-P), algas, CBOD e oxigênio dissolvido.

No processo de simulação, do módulo de qualidade da água, deve ser considerada uma atividade prévia de calibragem do modelo hidrodinâmico, cujos módulos operam de forma integrada.

O modelo admite como dados de entrada, parâmetros de natureza climática, temperatura da água, nutrientes fosfatados e nitrogenados e constituintes arbitrários.

Nos processos cinéticos advectivos e de transformações dos constituintes bioquímicos, o curso d'agua é tratado com reator de mistura completa, sendo cada compartimento limitado pelos volumes formados pelos pares de seções a montante e a jusante, conforme apresentado na Figura 3-1.

No processo de simulação considerou-se o escoamento do tipo permanente representativo de uma condição hidrológica média ( $Q_{MLT}$ ) e vazão de seca associada a 50% da  $Q_{98\%}$ , caracterizadas por afluências aportadas na porção mais a montante do rio Canoas próximo as suas cabeceiras, e afluências laterais distribuídos ao longo de todo o seu percurso até sua foz no Rio Uruguai.

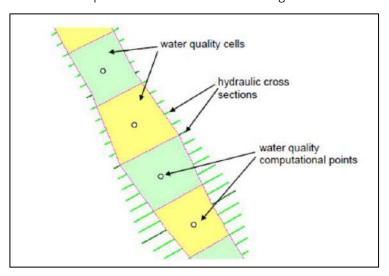



Figura 3-1: Células de Qualidade de Água e Seções Transversais no HEC-RAS.

Fonte: HFC-RAS 4.1 User's Manual.





### 4. Preparação da Base de Dados de Entrada

A preparação da base de dados de entrada da modelagem matemática integra dados característicos físicos e operacionais dos reservatórios e dados dos levantamentos topobatimétricos de seções transversais de todo o trecho do rio Canoas, formalizadas por meio de levantamentos topobatimétricos de seções transversais e de seções obtidas a partir de restituições aerofotogramétricas da área de interesse, fornecidas pelo Contratante.

Neste propósito, consideram-se também a definição do esquema topológico a ser adotado na modelagem matemática, a definição dos hidrogramas de cheias de projeto, as regras operacionais e curvas de descarga dos aproveitamentos.

### 4.1. Definição do Esquema Topológico da Modelagem Matemática

O leito é caracterizado por trecho com elevada declividade na região de cabeceiras, atingindo valores próximo de 0,5%, seguido por um trecho de baixa declividade, em sua porção média, até o eixo de implantação da PCH Ado Propinhak. Deste ponto em diante, por cerca de 150 km, segue em uma sucessão de pequenas quedas e corredeiras localizadas e trechos, relativamente, planos, que confere uma declividade média de cerca de 0,1 % e, onde, atualmente, opera a UHE Campos Novos, apresenta-se novamente com forte declividade, com queda bruta de 180 m. A jusante de Campos Novos, até sua foz volta a ter declividade bastante baixa.

Na Figura 4-1 é apresentada a configuração do perfil longitudinal do rio Canoas, onde podem ser verificadas as variações de declividade da calha de escoamento.

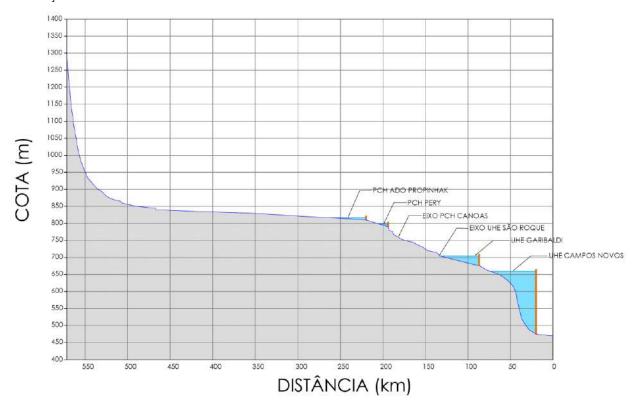



Figura 4-1: Rio Canoas – Perfil longitudinal

O trecho do rio Canoas modelado abrange um percurso de 551,5 km e a morfologia da calha de escoamento e áreas laterais anexas de extravasamento foi configurada por meio de 86 seções e seis reservatórios existentes e propostos ao longo deste percurso.





Da Figura 4-2 à Figura 4-7, apresenta-se a planta da bacia do Rio Canoas, com a indicação do seu curso e localização das seções topobatimétricas utilizadas nos estudos de modelagem matemática.



Figura 4-2: Localização das seções 1/6



Figura 4-3: Localização das seções 2/6





Figura 4-4: Localização das seções 3/6



Figura 4-5: Localização das seções 4/6





Figura 4-6: Localização das seções 5/6



Figura 4-7: Localização das seções 6/6

Na Tabela 4-1 é apresentado o posicionamento relativo das seções topobatimétricas, indicando o estaqueamento com distância referenciada na confluência com o rio Uruguai, a cota de fundo do álveo, a distância entre seções e a declividade de cada trecho de rio entre seções acompanhando o alinhamento do rio Canoas.



Tabela 4-1: Posicionamento Relativo das Seções Topobatimétricas

| Seção         | Estaqueamento<br>(m) | Cota de Fundo<br>(m) | Distância entre<br>Seções<br>(m) | Declividade |
|---------------|----------------------|----------------------|----------------------------------|-------------|
| SEÇÃO 5-Campo | 551.513              | 963,0                | 11.505                           | 0,45%       |
| SEÇÃO 35      | 540.008              | 911,1                | 8.063                            | 0,19%       |
| SEÇÃO 34      | 531.945              | 896,1                | 8.843                            | 0,23%       |
| SEÇÃO 33      | 523.102              | 876,1                | 8.523                            | 0,12%       |
| QA02          | 514.579              | 866,1                | 8.666                            | 0,12%       |
| SEÇÃO 32      | 505.913              | 856,1                | 3.138                            | 0,04%       |
| Interpolada   | 502.775              | 854,8                | 3.138                            | 0,04%       |
| Interpolada   | 499.637              | 853,6                | 3.138                            | 0,04%       |
| Interpolada   | 496.499              | 852,3                | 3.138                            | 0,04%       |
| SEÇÃO 31      | 493.361              | 851,1                | 2.294                            | 0,15%       |
| SEÇÃO 4-Campo | 491.067              | 847,7                | 2.725                            | 0,06%       |
| SEÇÃO 30      | 488.342              | 846,1                | 4.213                            | 0,00%       |
| Interpolada   | 484.129              | 846,1                | 4.213                            | 0,00%       |
| SEÇÃO 29      | 479.916              | 846,1                | 12.196                           | 0,04%       |
| SEÇÃO 28      | 467.720              | 841,1                | 5.135                            | 0,10%       |
| SEÇÃO 27      | 462.585              | 836,1                | 8.666                            | 0,00%       |
| QA03          | 453.919              | 836,1                | 9.514                            | 0,00%       |
| SEÇÃO 26      | 444.405              | 836,1                | 11.845                           | 0,02%       |
| SEÇÃO 3-Campo | 432.560              | 833,5                | 7.184                            | 0,00%       |
| SEÇÃO 24      | 425.376              | 836,1                | 4.758                            | 0,05%       |
| Interpolada   | 420.618              | 833,6                | 4.757                            | 0,05%       |
| SEÇÃO 23      | 415.861              | 831,1                | 9.514                            | 0,00%       |
| SEÇÃO 22      | 406.347              | 831,1                | 9.515                            | 0,00%       |
| SEÇÃO 21      | 396.832              | 831,1                | 9.514                            | 0,00%       |
| QA04          | 387.318              | 831,1                | 17.443                           | 0,00%       |
| SEÇÃO 2-Campo | 369.875              | 831,1                | 995                              | 0,11%       |
| SEÇÃO 19      | 368.880              | 830,0                | 11.049                           | 0,04%       |
| SEÇÃO 18      | 357.831              | 826,1                | 9.830                            | 0,00%       |
| SEÇÃO 17      | 348.001              | 826,1                | 9.829                            | 0,00%       |
| SEÇÃO 16      | 338.172              | 826,1                | 9.829                            | 0,05%       |
| SEÇÃO 15      | 328.343              | 821,1                | 9.829                            | 0,00%       |
| QA05          | 318.514              | 821,1                | 10.093                           | 0,00%       |
| SEÇÃO 1-Campo | 308.421              | 821,1                | 9.218                            | 0,00%       |
| -             |                      |                      | •                                |             |



| Seção            | Estaqueamento<br>(m) | Cota de Fundo<br>(m) | Distância entre<br>Seções<br>(m) | Declividade |
|------------------|----------------------|----------------------|----------------------------------|-------------|
| SEÇÃO 13         | 299.203              | 821,1                | 9.656                            | 0,00%       |
| SEÇÃO 12         | 289.547              | 821,1                | 9.656                            | 0,05%       |
| SEÇÃO 11         | 279.891              | 816,1                | 4.828                            | 0,00%       |
| Interpolada      | 275.063              | 816,1                | 4.827                            | 0,00%       |
| SEÇÃO 10         | 270.236              | 816,1                | 9.656                            | 0,00%       |
| QA06             | 260.580              | 816,1                | 7.956                            | 0,06%       |
| SEÇÃO 09         | 252.624              | 811,1                | 6.026                            | 0,00%       |
| QA07             | 246.598              | 822,1                | 9.238                            | 0,12%       |
| SEÇÃO 08         | 237.360              | 811,1                | 17.478                           | 0,03%       |
| PCH ADO POPINHAK | 219.882              | 806,1                | 1.449                            | 0,60%       |
| S-13             | 218.433              | 797,3                | 3.191                            | 0,10%       |
| S-11             | 215.242              | 794,0                | 2.627                            | 0,00%       |
| S-10             | 212.615              | 799,5                | 4.207                            | 0,07%       |
| S-8              | 208.408              | 796,5                | 3.084                            | 0,18%       |
| S-1- QA09        | 205.324              | 790,8                | 8.766                            | 0,00%       |
| SC-457           | 196.558              | 793,0                | 2.725                            | 0,00%       |
| PCH PERY         | 193.833              | 796,1                | 108                              | 1,86%       |
| PRIME18 - QA10   | 193.725              | 794,0                | 930                              | 1,62%       |
| STB12            | 192.795              | 779,0                | 2.971                            | 0,11%       |
| STB10            | 189.824              | 775,7                | 2.446                            | 0,43%       |
| STB06            | 187.378              | 765,2                | 1.422                            | 0,14%       |
| STB05            | 185.956              | 763,2                | 4.050                            | 0,18%       |
| PCH CANOAS       | 181.906              | 756,1                | 1.889                            | 0,00%       |
| QA13             | 180.017              | 756,1                | 5.136                            | 0,12%       |
| Interpolada      | 174.881              | 750,1                | 5.136                            | 0,12%       |
| PRIME17          | 169.745              | 744,0                | 11.764                           | 0,09%       |
| PRIME16          | 157.981              | 734,0                | 3.653                            | 0,08%       |
| QA16             | 154.328              | 731,1                | 8.291                            | 0,18%       |
| PRIME15          | 146.037              | 716,0                | 10.833                           | 0,06%       |
| PRIME14          | 135.204              | 710,0                | 874                              | 0,46%       |
| UHE SÃO ROQUE    | 134.330              | 706,1                | 2.924                            | 0,21%       |
| PRIME13          | 131.406              | 700,0                | 8.411                            | 0,07%       |
| PRIME12          | 122.995              | 694,0                | 6.781                            | 0,04%       |
| SEÇÃO 06         | 116.214              | 691,1                | 6.782                            | 0,07%       |





| Seção            | Estaqueamento (m) | Cota de Fundo<br>(m) | Distância entre<br>Seções<br>(m) | Declividade |
|------------------|-------------------|----------------------|----------------------------------|-------------|
| PRIME11          | 109.432           | 686,0                | 6.888                            | 0,00%       |
| SEÇÃO 05         | 102.544           | 686,1                | 13.776                           | 0,09%       |
| PRIME10          | 88.768            | 674,0                | 1.791                            | 0,00%       |
| UHE GARIBALDI    | 86.977            | 676,1                | 2.488                            | 0,32%       |
| PRIME09          | 84.489            | 668,0                | 6.551                            | 0,11%       |
| SEÇÃO 04         | 77.938            | 661,1                | 6.552                            | 0,14%       |
| PRIME08          | 71.386            | 652,0                | 4.485                            | 0,00%       |
| QA19             | 66.901            | 656,1                | 5.833                            | 0,00%       |
| SEÇÃO 03         | 61.068            | 656,1                | 5.834                            | 0,37%       |
| PRIME07          | 55.234            | 634,5                | 7.250                            | 0,00%       |
| SEÇÃO 02         | 47.984            | 656,1                | 7.251                            | 0,00%       |
| SEÇÃO 01         | 40.733            | 656,1                | 7.250                            | 2,15%       |
| PRIME06          | 33.483            | 500,0                | 9.587                            | 0,13%       |
| PRIME05          | 23.896            | 487,5                | 3.156                            | 0,52%       |
| UHE CAMPOS NOVOS | 20.740            | 471,1                | 845                              | 0,00%       |
| PRIME04          | 19.895            | 472,0                | 3.620                            | 0,00%       |
| PRIME03          | 16.275            | 472,0                | 8.797                            | 0,05%       |
| PRIME02 - QA20   | 7.478             | 468,0                | 7.362                            | 4,61%       |
| PRIME01          | 116               | 129,0                | 116                              | 4,61%       |

Na preparação da base de dados de entrada do modelo matemático, algumas seções transversais tiveram os terrenos laterais de suas margens estendidas visando alcançar as cotas de inundação geradas pelos picos das ondas de cheias.

### 4.2. Hidrogramas de Cheias de Projeto

Para a definção dos hidrogramas de cheias, ao longo do rio Canoas, foram feitos a identificação de postos operados ao longo do rio, transposição de dados des postos para os pontos de interesse e estudos estatísticos de eventos extremos para estes locais.

### 4.2.1. Dados Básicos

Foram utilizados dados de postos fluviométricos oficiais instalados no próprio rio. A pesquisa, tanto das estações disponíveis, quanto das séries históricas de dados foi realizada no banco de dados virtual da ANA, o Hidroweb.

A Tabela 4-2 apresenta as principais características das estações selecionadas. Buscou-se adotar para os estudos estações com boa variabilidade espacial e distribuídas ao longo do curso do rio Canoas, conforme ilustrado na Figura 4-8.





Tabela 4-2: Estações Fluviométricas Selecionadas

| Código   | Nome                        | Rio    | Operadora | Área de<br>Drenagem<br>(km²) | Latitude | Longitude |
|----------|-----------------------------|--------|-----------|------------------------------|----------|-----------|
| 71200000 | Vila Canoas                 | Canoas | CPRM      | 1.010                        | 27,8028  | 49,7786   |
| 71300000 | Rio Bonito                  | Canoas | CPRM      | 2.000                        | 27,7022  | 49,8400   |
| 71350000 | Encruzilhada                | Canoas | ANA       | 3.230                        | 27,5003  | 50,1331   |
| 71383000 | Ponte Alta do Sul           | Canoas | CPRM      | 4.610                        | 27,4858  | 50,3917   |
| 71550000 | Passo Caru                  | Canoas | ANA       | 10.000                       | 27,5381  | 50,8600   |
| 71800000 | Colônia Santana             | Canoas | ANA       | 13.200                       | 27,6500  | 51,0500   |
| 71840000 | UHE Campos Novos Barramento | Canoas | Enercan   | 14.433                       | 27,6064  | 51,3256   |

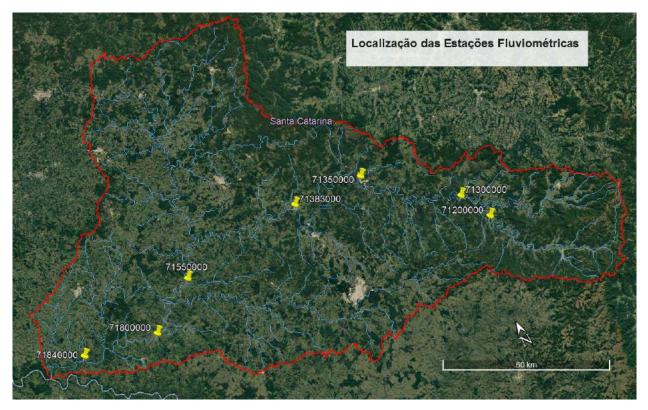



Figura 4-8: Estações Fluviométricas Selecionadas para os Estudos

Os dados de vazões das estações foram obtidos diretamente do Hidroweb, priorizando-se sempre os dados consistidos pela agência, quando disponíveis. A Tabela 4-3 apresenta o período e a natureza das séries de vazões disponíveis em cada estação fluviométrica.

Tabela 4-3: Período e Natureza dos Dados Disponíveis em Cada Estação Fluviométrica

| Código   | Nome         | Dados Consistidos | Dados Brutos      |
|----------|--------------|-------------------|-------------------|
| 71200000 | Vila Canoas  | 06/1957 - 12/2014 | 01/2015 - 07/2020 |
| 71300000 | Rio Bonito   | 03/1942 - 12/2014 | 01/2015 - 01/2020 |
| 71350000 | Encruzilhada | 09/1951 - 12/1985 | -                 |





| Código   | Nome                        | Dados Consistidos | Dados Brutos      |
|----------|-----------------------------|-------------------|-------------------|
| 71383000 | Ponte Alta do Sul           | 11/1956 - 12/2014 | 01/2015 - 01/2018 |
| 71550000 | Passo Caru                  | 01/1951 - 03/2013 | -                 |
| 71800000 | Colônia Santana             | 01/1964 - 02/1985 | -                 |
| 71840000 | UHE Campos Novos Barramento | 01/1995 - 12/2014 | -                 |

Para caracterização do regime sazonal da região, foram avaliadas as vazões médias mensais adimensionalizadas pela MLT de algumas das estações selecionadas. Com o intuito de conferir maior coerência na comparação, foi considerado apenas o período em comum de dados entre as séries históricas.

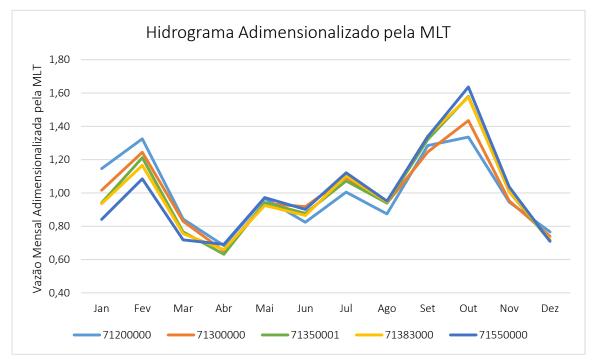



Figura 4-9: Hidrograma Adimensionalizado pela MLT

Nota-se que as mínimas anuais concentram-se nos meses de março e abril, enquanto as vazões médias mensais mais altas ocorrem em outubro.

Para uma análise quantitativa da produção hídrica na bacia, foram avaliadas as vazões históricas consistidas da estação Passo Caru. Escolheu-se a estação Passo Caru por estar no terço inferior da bacia e ainda sem interferência de reservatórios de regularização.

Na Tabela 4-4 são apresentados os dados das vazões médias mensais expressa em m³/s e produtividade hídrica expressa em L/s/km² compilado com base no histórico observado. Na Figura 4-10 apresenta-se o respectivo histograma retratando a distribuição mensal das vazões ao longo do ano.

Tabela 4-4: Vazão Médias Mensais – Estação: Passo Caru

| Mês   | Vazão  |           |  |
|-------|--------|-----------|--|
| ivies | (m³/s) | (L/s/km²) |  |
| Jan   | 204,2  | 20,42     |  |
| Fev   | 265,2  | 26,52     |  |
| Mar   | 210,2  | 21,02     |  |





| Mês   | Vazão  |           |  |
|-------|--------|-----------|--|
| ivies | (m³/s) | (L/s/km²) |  |
| Abr   | 168,4  | 16,84     |  |
| Mai   | 215,7  | 21,57     |  |
| Jun   | 227,5  | 22,75     |  |
| Jul   | 300,1  | 30,01     |  |
| Ago   | 301,6  | 30,16     |  |
| Set   | 368,3  | 36,83     |  |
| Out   | 397,1  | 39,71     |  |
| Nov   | 284,5  | 28,45     |  |
| Dez   | 198,9  | 19,89     |  |
| Ano   | 263,3  | 26,33     |  |




Figura 4-10: Vazão Médias Mensais — Estação: Passo Caru

O padrão sazonal de escoamento apura um período de vazões máximas abrangendo os meses de setembro e outubro com vazões médias variando entre 368 m³/s e 397 m³/s.

O período mais seco do ano está compreendido entre os meses de março e maio, com mínimas observadas geralmente no mês de abril, com 168 m³/s.

O padrão intenso da chuva incidente na bacia do rio Canoas combinado com a distribuição anual bimodal da precipitação afere uma elevada vazão específica e um comportamento sazonal de escoamento pouco acentuado ao longo do ano.

### 4.2.2. Cálculo das Cheias de Projeto

A partir das séries de vazões históricas de cada estação, foram aplicadas às cheias máximas anuais (ano hidrológico normal) distribuições de probabilidades visando a estimativa de valores extremos com maiores períodos de recorrência.

Para seleção da distribuição de probabilidades a ser empregada seguiu-se a recomendação da ELETROBRÁS, constante no "Guia Para Cálculo de Cheia de Projeto de Vertedores" (1987), que preconiza a utilização da distribuição de Gumbel para séries com assimetria inferior a 1,5, e distribuição exponencial para assimetrias superiores a 1,5.



Calculadas as vazões extremas para cada estação, os valores para cada ponto de interesse foram inferidos a partir de curvas de regionalização traçadas para cada tempo de retorno considerando a cheia estimada de cada estação e as respectivas áreas de drenagem.

### 4.2.3. Hidrogramas de Cheia

As ondas de cheias de projeto foram formalizadas a partir da conceituação do Hidrograma Unitário Curvilíeno (HUC), estabelecido de acordo com os procedimentos preconizados pelo Soil Conservation Service (SCS), conforme esquematizado na Figura 4-11.

Baseado nesta conceituação, foram elaborados hidrogramas de ondas de cheias associadas às condições hidrológicas referentes às vazões de longo termo ( $Q_{MLT}$ ) e associadas as recorrências de 100 anos ( $Q_{1.000}$ ) e 1.000 anos ( $Q_{1.000}$ ).

As vazões de referência consideradas na composição dos hidrogramas foram baseadas em dados de estações fluviométricas representativos existentes no curso do rio Canoas.

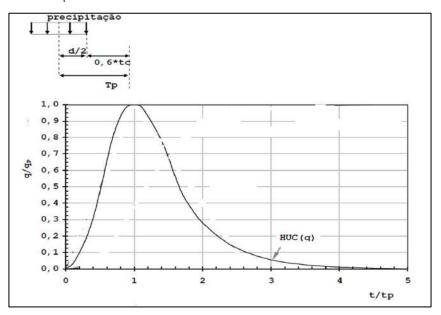



Figura 4-11: Hidrograma Unitário Curvilíneo – Soil Conservation Service

### Onde:

- $t_p$  (tempo de pico): Intervalo de tempo entre o início da subida do hidrograma e a passagem da vazão máxima.
- t<sub>c</sub> (tempo de concentração da bacia): Tempo necessário para a primeira gota da precipitação de projeto atinja o ponto exutório da bacia considerada.
- **d** (duração): Duração da chuva de projeto.
- $t_b$  (tempo de base): Intervalo de tempo necessário para a passagem do hidrograma completo provocado por uma dada precipitação. Para o caso do HUC, considerado igual a 5 \*  $t_p$ .

Conforme apontado no U.S.A. – Federal Highway Administration. Hydraulic Engineering – circular nº 22, third edition, o tempo de pico pode ser estimado em, aproximadamente,  $t_p$  = 2/3 \*  $t_c$ , portanto para  $t_p$  = d/2 + 0.6 \*  $t_c$ , temos d ~ 0.2 \*  $t_c$ .

Nestas estimativas adotou-se o valor  $t_p = 0.2 * t_c/2 + 0.6 * t_c = 0.7 * t_c$ .

NaTabela 4-5 são apresentadas as ordenadas e abscissas do Hidrograma Unitário Curvilíneo Adimensional.





Tabela 4-5: Hidrograma Unitário Curvilíeno Admensional – SCS

| t/t <sub>p</sub> | Q/Q <sub>p</sub> | t/t <sub>p</sub> | Q/Q <sub>p</sub> |
|------------------|------------------|------------------|------------------|
| 0,0              | 0,000            | 1,6              | 0,560            |
| 0,1              | 0,030            | 1,7              | 0,460            |
| 0,2              | 0,100            | 1,8              | 0,390            |
| 0,3              | 0,190            | 1,9              | 0,330            |
| 0,4              | 0,310            | 2,0              | 0,280            |
| 0,5              | 0,470            | 2,2              | 0,207            |
| 0,6              | 0,660            | 2,4              | 0,147            |
| 0,7              | 0,820            | 2,6              | 0,107            |
| 0,8              | 0,930            | 2,8              | 0,077            |
| 0,9              | 0,990            | 3,0              | 0,055            |
| 1,0              | 1,000            | 3,2              | 0,040            |
| 1,1              | 0,990            | 3,4              | 0,029            |
| 1,2              | 0,930            | 3,6              | 0,021            |
| 1,3              | 0,860            | 3,8              | 0,015            |
| 1,4              | 0,780            | 4,0              | 0,011            |
| 1,5              | 0,680            | 4,5              | 0,005            |
| 1,6              | 0,560            | 5,0              | 0,000            |

Para que uma dada precipitação produza a máxima vazão no ponto exutório, sua duração deverá ser maior ou igual ao tempo de concentração da bacia, portanto,  $t_p = d/2 + 0.6 * t_c$  resulta  $t_p = 1.1 * t_c$ .

Os tempos de concentração foram determinados pela fórmula de Kirpich.

$$t_c = 57 * (L^3/\Delta H)^{0.385}$$

#### Onde:

- t<sub>c</sub> = tempo de concentração da bacia, em minutos.
- L = comprimento do talvegue desde a nascente até o ponto de interesse em quilômetro.
- $\Delta H$  = desnível entre a nascente e ponto de interesse em metro.

Em cada ponto de interesse, a vazão mínima Q<sub>98%</sub>, foi considerada como vazão de base.

Nas Tabela 4-6; Tabela 4-7 e Tabela 4-8 são apresentados os resultados dos parâmetros considerados na construção dos hidrogramas nos diversos pontos de coleta de amostras de qualidade da água e, na

Tabela 4-9, os parâmetros referentes aos eixos dos barramentos implantados e previstos, ao longo do rio Canoas.

Tabela 4-6: Hidrogramas de Vazões nos Pontos de Amostragem 1/3



| Parâmetro              | Q <sub>A1</sub> | Q <sub>A2</sub> | Q <sub>A4</sub> | Q <sub>A5</sub> | Q <sub>A6</sub> | Q <sub>A7</sub> |
|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| AD (km²)               | 70              | 610             | 2.570           | 3.230           | 4.410           | 4.610           |
| $Q_{98\%}$ ( $m^3/s$ ) | 0,5             | 3,3             | 12,2            | 15,0            | 19,9            | 20,7            |
| QMLT (m³/s)            | 3               | 20              | 72              | 89              | 117             | 122             |
| $Q_{100} (m^3/s)$      | 23              | 215             | 1.011           | 1.296           | 1.821           | 1.912           |
| $Q_{1000} (m^3/s)$     | 29              | 283             | 1.354           | 1.742           | 2.458           | 2.582           |
| TALVEGUE (m)           | 14.228          | 56.841          | 184.102         | 252.906         | 310.840         | 326.752         |
| DH (m)                 | 283,1           | 418,9           | 455,1           | 463,1           | 471,3           | 473,5           |
| $T_{\rm c}$ (h)        | 2,3             | 9,9             | 37,2            | 53,3            | 67,2            | 71,1            |
| $T_{p}$ (h)            | 1,6             | 6,9             | 26,0            | 37,3            | 47,0            | 49,7            |

Tabela 4-7: Hidrogramas de Vazões nos Pontos de Amostragem 2/3

| Parâmetro    | Q <sub>A8</sub> | Q <sub>A9</sub> | Q <sub>A10</sub> | Q <sub>A11</sub> | Q <sub>A12</sub> | Q <sub>A13</sub> |
|--------------|-----------------|-----------------|------------------|------------------|------------------|------------------|
| AD (km²)     | 5.320           | 5.500           | 5.650            | 5.650            | 5.650            | 5.650            |
| Q98% (m³/s)  | 23,6            | 24,3            | 24,9             | 24,9             | 24,9             | 24,9             |
| QMLT (m3/s)  | 139             | 143             | 147              | 147              | 147              | 147              |
| Q100 (m³/s)  | 2.237           | 2.320           | 2.389            | 2.389            | 2.389            | 2.389            |
| Q1000 (m³/s) | 3.026           | 3.140           | 3.235            | 3.235            | 3.235            | 3.235            |
| TALVEGUE (m) | 351.526         | 366.329         | 377.703          | 382.706          | 388.246          | 391.403          |
| DH (m)       | 478,0           | 489,1           | 497,7            | 512,3            | 526,3            | 531,9            |
| Tc (h)       | 77,0            | 80,1            | 82,4             | 82,7             | 83,3             | 83,7             |
| Tp (h)       | 53,9            | 56,1            | 57,7             | 57,9             | 58,3             | 58,6             |

Tabela 4-8: Hidrogramas de Vazões nos Pontos de Amostragem 3/3

| Parâmetro                | Q <sub>A14</sub> | Q <sub>A16</sub> | Q <sub>A17</sub> | Q <sub>A18</sub> | Q <sub>A19</sub> | Q <sub>A20</sub> |
|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| AD (km²)                 | 5.820            | 9.770            | 10.040           | 10.100           | 13.100           | 14.550           |
| $Q_{98\%}$ ( $m^3/s$ )   | 25,6             | 40,9             | 41,9             | 42,1             | 53,3             | 58,6             |
| QMLT (m <sup>3</sup> /s) | 151              | 241              | 247              | 249              | 315              | 346              |
| $Q_{100} (m^3/s)$        | 2.468            | 4.366            | 4.499            | 4.529            | 6.038            | 6.783            |
| $Q_{1000} (m^3/s)$       | 3.344            | 5.955            | 6.140            | 6.181            | 8.269            | 9.302            |
| TALVEGUE (m)             | 410.770          | 417.092          | 434.945          | 443.140          | 504.519          | 560.997          |
| DH (m)                   | 548,8            | 556,2            | 574,3            | 586,6            | 634,3            | 815,7            |
| $T_{c}$ (h)              | 87,4             | 88,5             | 91,8             | 93,0             | 104,9            | 107,6            |
| $T_{p}$ (h)              | 61,2             | 62,0             | 64,3             | 65,1             | 73,4             | 75,3             |



Tabela 4-9: Hidrogramas de Vazões nos Eixos dos Aproveitamentos

| Parâmetro              | UHE<br>Campos<br>Novos | UHE<br>Garibaldi | UHE São<br>Roque | PCH<br>Canoas | PCH Pery | PCH Ado<br>Popinhak |
|------------------------|------------------------|------------------|------------------|---------------|----------|---------------------|
| AD (km²)               | 14.430                 | 13.040           | 10.040           | 5.660         | 5.600    | 5.330               |
| $Q_{98\%}$ ( $m^3/s$ ) | 58,2                   | 53,1             | 41,9             | 24,9          | 24,7     | 23,6                |
| QMLT (m³/s)            | 343                    | 313              | 247              | 147           | 146      | 139                 |
| $Q_{100} (m^3/s)$      | 6.721                  | 6.008            | 4.499            | 2.394         | 2.366    | 2.241               |
| $Q_{1000} (m^3/s)$     | 9.216                  | 8.226            | 6.140            | 3.242         | 3.203    | 3.032               |
| TALVEGUE (m)           | 550.680                | 484.443          | 437.090          | 389.514       | 377.587  | 351.538             |
| DH (m)                 | 811,7                  | 612,2            | 580,7            | 527,8         | 497,6    | 478,0               |
| $T_{c}$ (h)            | 105,5                  | 101,4            | 91,9             | 83,5          | 82,4     | 77,0                |
| $T_p$ (h)              | 73,9                   | 71,0             | 64,4             | 58,4          | 57,7     | 53,9                |

# 4.3. Regras Operacionais e Curvas de Descarga dos Vertedores

Para as simulações da propagação das cheias ao longo da calha do rio Canoas, foram considerados os modos de operação dos vertedouros de cada um destes aproveitamentos, cujas características são apresentadas nos itens a seguir.

Para os aproveitamentos dotados apenas de vertedouros controlados, foram considerados o nível máximo operacional e a capacidade máxima de vertimento, previstos em projeto e, para aqueles dotados de vertedouros com soleira livre, será apresentada a curva de descarga dos extravasores e os consequentes níveis operacionais.

# 4.3.1. PCH Ado Popinhak

A PCH Ado Popinhak conta com um vertedouro de soleira livre; um vertedouro controlado por comportas do tipo taipa e um descarregador de fundo.

O vertedouro de soleira livre tem crista na cota 817,0 m, com 89,5 m de comprimento, o controlado tem soleira com comprimento de 47,9 m, na cota 816,0 m, com comportas tipo taipa, com 1,85 m de altura, dividida em dois seguimentos iguais, com abertura automática na cota de 818,2 m, para o primeiro trecho, e na cota 818,4 m, para o segundo.

Na Tabela 4-10 é apresentada a capacidade de descarga teórica do conjunto de vertedouros com soleiras livre e controladas por taipas.

Tabela 4-10: PCH Ado Popinhak – Curva de Descarga dos Vertedouros de Superfície.

| Cota  |                                     | Vazão (m | ³/s) |     |
|-------|-------------------------------------|----------|------|-----|
| (m)   | Soleira livre Taipa 1 Taipa 2 Total |          |      |     |
| 817,0 | 0,0                                 | 0,0      | 0,0  | 0,0 |





| Cota  |               | Vazão (m | ³/s)    |         |
|-------|---------------|----------|---------|---------|
| (m)   | Soleira livre | Taipa 1  | Taipa 2 | Total   |
| 817,2 | 21,2          | 0,0      | 0,0     | 21,2    |
| 817,4 | 37,4          | 0,0      | 0,0     | 37,4    |
| 817,6 | 58,7          | 0,0      | 0,0     | 58,7    |
| 817,8 | 85,5          | 0,0      | 0,0     | 85,5    |
| 818,0 | 118,1         | 0,0      | 0,0     | 118,1   |
| 818,2 | 156,5         | 0,0      | 0,0     | 156,5   |
| 818,4 | 201,0         | 0,0      | 0,0     | 201,0   |
| 818,6 | 251,7         | 0,0      | 0,0     | 251,7   |
| 818,8 | 308,9         | 0,0      | 0,0     | 308,9   |
| 819,0 | 372,7         | 0,0      | 0,0     | 372,7   |
| 819,2 | 443,2         | 0,0      | 0,0     | 443,2   |
| 819,4 | 520,5         | 0,0      | 0,0     | 520,5   |
| 819,6 | 604,8         | 344,9    | 0,0     | 949,7   |
| 819,8 | 696,2         | 378,4    | 0,0     | 1.074,6 |
| 820,0 | 794,8         | 413,3    | 0,0     | 1.208,0 |
| 820,2 | 900,7         | 449,4    | 449,4   | 1.799,4 |
| 820,4 | 1.013,9       | 486,7    | 486,7   | 1.987,4 |
| 820,6 | 1.134,7       | 525,3    | 525,3   | 2.185,4 |
| 820,8 | 1.263,1       | 565,2    | 565,2   | 2.393,4 |
| 821,0 | 1.399,2       | 606,2    | 606,2   | 2.611,6 |
| 821,2 | 1.543,1       | 648,4    | 648,4   | 2.839,9 |
| 821,4 | 1.694,8       | 691,8    | 691,8   | 3.078,5 |
| 821,6 | 1.854,5       | 736,4    | 736,4   | 3.327,3 |
| 821,8 | 2.022,2       | 782,2    | 782,2   | 3.586,5 |
| 822,0 | 2.198,0       | 829,0    | 829,0   | 3.856,1 |

# 4.3.2. PCH Pery

A PCH Pery é dotada de um vertedouro de soleira livre, de pequena altura, que barra o rio Canoas em toda sua largura. A soleira vertente tem 212,5 m de extensão, com crista na cota 798,48 m e as barragens de fechamento têm crista na cota 802,06 m.

Por ser uma estrutura projetada e implantada há muito tempo, não se dispõem de dados precisos da geometria do vertedouro e, em função desta limitação, para a determinação de sua curva de descarga, conservadoramente, admitiu-se coeficiente de descarga constante, igual a 2,0 m<sup>0,5</sup>/s, e de contração na aproximação (ka) igual a 0,2.

Para estas condições é apresentada na Tabela 4-11 a curva de descarga do vertedouro da PCH Pery.

Tabela 4-11: PCH Pery – Curva de descarga do vertedouro





| Cota (m) | Vazão<br>(m³/s) |
|----------|-----------------|
| 798,4    | 0               |
| 798,6    | 30,8            |
| 798,8    | 89,9            |
| 799,0    | 171,6           |
| 799,2    | 273,0           |
| 799,4    | 392,2           |
| 799,6    | 535,6           |
| 799,8    | 677,9           |
| 800,0    | 835,1           |
| 800,2    | 1.006,9         |
| 800,4    | 1.193,2         |
| 800,6    | 1.393,5         |
| 800,8    | 1.607,8         |
| 801,0    | 1.835,9         |
| 801,2    | 2.077,5         |
| 801,4    | 2.332,4         |
| 801,6    | 2.600,7         |
| 801,8    | 2.882,0         |
| 802,0    | 3.176,4         |
| 802,2    | 3.483,6         |
| 802,4    | 3.803,5         |
| 802,6    | 4.136,1         |
| 802,8    | 4.481,2         |
| 803,0    | 4.838,7         |

#### 4.3.3. PCH Canoas

De acordo com o projeto básico da PCH Canoas, este barramento terá um vertedouro de soleira livre, com 140 m de comprimento e crista na cota 780,0 m, dimensionado para uma carga de projeto de 3,01 m, e um vertedouro controlado por comportas segmento de 8,0 m x 14,8 m (L x H), com perfil vertente tipo Creager e soleira na cota 763,0 m. Na Tabela 4-12 é apresentada a curva de descarga do conjunto, conforme previsto em projeto.

Tabela 4-12: PCH Canoas – Curva de descarga dos vertedouros

| Cota (m) | Vazões                   | Vazão total |        |
|----------|--------------------------|-------------|--------|
| Cota (m) | Soleira livre Controlado |             | (m³/s) |
| 780,0    | 0,0                      | 0,0         | 0,0    |
| 780,5    | 91,0                     | 0,0         | 91,0   |





| Cota (m) | Vazões        | (m³/s)     | Vazão total |
|----------|---------------|------------|-------------|
| Cota (m) | Soleira livre | Controlado | (m³/s)      |
| 780,5    | 91,0          | 2.368,1    | 2.459,2     |
| 781,0    | 270,3         | 2.481,2    | 2.751,5     |
| 781,5    | 515,7         | 2.593,2    | 3.108,9     |
| 782,0    | 820,8         | 2.707,2    | 3.528,1     |
| 782,5    | 1.178,5       | 2.824,5    | 4.003,0     |
| 783,0    | 1.585,2       | 2.943,3    | 4.528,5     |
| 783,5    | 2.040,0       | 3.070,3    | 5.110,3     |
| 784,0    | 2.541,2       | 3.195,7    | 5.737,0     |

# 4.3.4. UHE São Roque

A UHE São Roque, atualmente em construção, de acordo com seu projeto contará com um vertedouro de soleira livre, com 390 m de extensão e cota de coroamento 760,0 m, dimensionado para carga nominal de 3,84 m e garantir a passagem da cheia máxima provável no local, com uma sobrelevação máxima no reservatório de 5,91 m.

Na Tabela 4-13 é apresentado a curva de descarga do vertedouro, conforme prevista em projeto.

Tabela 4-13: UHE São Roque – Curva de descarga do vertedouro

| Cota (m) | Vazão (m³/s) |
|----------|--------------|
| 760,0    | 0            |
| 760,2    | 20,5         |
| 760,4    | 82,3         |
| 760,6    | 185,4        |
| 760,8    | 329,8        |
| 761,0    | 515,6        |
| 761,2    | 742,8        |
| 761,4    | 1.011,5      |
| 761,6    | 1.321,5      |
| 761,8    | 1.673,1      |
| 762,0    | 2.066,1      |
| 762,2    | 2.500,5      |
| 762,4    | 2.976,5      |
| 762,6    | 3.494,0      |
| 762,8    | 4.052,9      |
| 763,0    | 4.653,4      |
| 763,2    | 5.295,4      |
| 763,4    | 5.978,9      |





| Cota (m) | Vazão (m³/s) |
|----------|--------------|
| 763,6    | 6.704,0      |
| 763,8    | 7.470,6      |
| 764,0    | 8.278,7      |
| 764,2    | 9.128,4      |
| 764,4    | 10.019,7     |
| 764,6    | 10.952,5     |
| 764,8    | 11.926,9     |
| 765,0    | 12.942,8     |

### 4.3.5. UHE Garibaldi

A UHE Garibaldi, em operação desde 2013, conta com um vertedouro de soleira livre, com 381,0 m de extensão, na cota 705,0 m, dimensionado para garantir a passagem da cheia máxima provável para aquele sítio de barramento.

A partir de suas características geométricas, obtidas dos desenhos e documentos de projeto, foi determinada a curva de descarga deste vertedouro, apresentada na Tabela 4-14.

Tabela 4-14: UHE Garibaldi – Curva de descarga do vertedouro

| Cota (m) | Vazão (m³/s) |
|----------|--------------|
| 705,0    | 0,0          |
| 705,2    | 31,9         |
| 705,4    | 111,5        |
| 705,6    | 231,8        |
| 705,8    | 389,6        |
| 706,0    | 582,9        |
| 706,2    | 810,1        |
| 706,4    | 1.070,1      |
| 706,6    | 1.361,8      |
| 706,8    | 1.684,5      |
| 707,0    | 2.037,3      |
| 707,2    | 2.419,9      |
| 707,4    | 2.831,5      |
| 707,6    | 3.271,6      |
| 707,8    | 3.740,0      |
| 708,0    | 4.236,0      |
| 708,2    | 4.759,5      |
| 708,4    | 5.309,9      |





| Cota (m) | Vazão (m³/s) |
|----------|--------------|
| 708,6    | 5.887,1      |
| 708,8    | 6.490,7      |
| 709,0    | 7.120,5      |
| 709,2    | 7.776,1      |
| 709,4    | 8.457,3      |
| 709,6    | 9.164,0      |
| 709,8    | 9.895,9      |
| 710,0    | 10.652,7     |
| 710,2    | 11.434,3     |
| 710,4    | 12.240,5     |
| 710,6    | 13.071,1     |
| 710,8    | 13.925,9     |
| 711,0    | 14.804,8     |
| 711,2    | 15.707,6     |
| 711,4    | 16.634,2     |
| 711,6    | 17.584,4     |
| 711,8    | 18.558,1     |
| 712,0    | 19.555,1     |

# 4.3.6. UHE Campos Novos

A UHE Campos Novos em operação desde 2006, é dotada de um vertedouro controlado por 4 comportas segmento de 17,4 m x 20, 0 m (L x H), com capacidade para garantir a passagem de cheias com recorrência superiores a 1000 anos.

Conforme Relatório ANEEL de fevereiro 2006, o nível d'água máximo normal foi definido na cota 660,0 m e o nível máximo maximorum na elevação 665,0 m, associada a vazão de projeto de 18.300 m3/s, o que resulta em uma sobrelevação de 5 metros.

Portanto, para a finalidade dos estudos de propagação de cheias, considerou-se uma sobrelevação próxima de 1,5 m para recorrência de 100 anos e 3,0 m para a recorrência de 1000 anos.





# 5. Propagação de Cheias

Os estudos de propagação de cheias foram feitos mediante simulações da passagem dos hidrogramas das cheias de projeto, por meio do modelo de simulação HEC-RAS 5.0.7.

Os resultados das simulações são apresentados por meio de saídas gráficas representando as condições hidrológicas associadas à vazão média de longo termo e as ondas de cheias com recorrências de 100 e 1.000 anos, nas seguintes formas:

- Perfis das linhas d'água máximas de projeto atingidas ao longo de todo o percurso simulado do rio Canoas;
- Cotagramas de níveis d'agua nos locais dos aproveitamentos e
- Hidrogramas de onda de cheia nos locais dos aproveitamentos.

### 5.1. Simulação do Cenário Atual

A seguir são apresentados os resultados da simulação referente a condição atual considerando a presença dos quatro aproveitamentos em operação: UHE Campos Novos; UHE Garibaldi; PCH Pery e PCH Ado Popinhak.

#### 5.1.1. Análise para a Vazão Média de Longo Termo

Na Figura 5-1 é apresentado o perfil da linha d'água considerando a afluência da vazão média de longo termo (Q<sub>MLT</sub>).

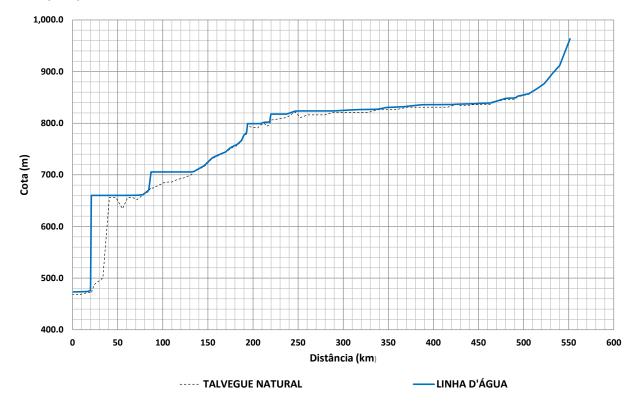



Figura 5-1: Perfil da Linha d'água para a Vazão Q<sub>MLT</sub> – Cenário Atual

Na Tabela 5-1 apresenta-se o resumo dos resultados obtidos na simulação em diversos pontos do curso do rio Canoas considerando a veiculação da vazão  $Q_{\text{MLT}}$ .





Tabela 5-1: Vazão Q<sub>MLT</sub> — Cenário Atual

| Local         | Distância<br>(km) | Cota de<br>Fundo (m) | Vazão Q <sub>MLT</sub><br>(m³/s) | NA<br>(m) |
|---------------|-------------------|----------------------|----------------------------------|-----------|
| SEÇÃO 5-Campo | 552               | 963,0                | 3,0                              | 963,4     |
| SEÇÃO 35      | 540               | 911,1                | 3,0                              | 911,8     |
| SEÇÃO 34      | 532               | 896,1                | 3,0                              | 896,2     |
| SEÇÃO 33      | 523               | 876,1                | 3,0                              | 876,8     |
| QA02          | 515               | 866,1                | 20,0                             | 866,5     |
| SEÇÃO 32      | 506               | 856,1                | 20,0                             | 857,2     |
| Interpolada   | 503               | 854,8                | 20,0                             | 856,0     |
| Interpolada   | 500               | 853,6                | 20,0                             | 854,7     |
| Interpolada   | 496               | 852,3                | 20,0                             | 853,6     |
| SEÇÃO 31      | 493               | 851,1                | 20,0                             | 852,1     |
| SEÇÃO 4-Campo | 491               | 847,7                | 20,0                             | 849,1     |
| SEÇÃO 30      | 488               | 846,1                | 20,0                             | 848,8     |
| Interpolada   | 484               | 846,1                | 20,0                             | 848,5     |
| SEÇÃO 29      | 480               | 846,1                | 20,0                             | 848,1     |
| SEÇÃO 28      | 468               | 841,1                | 20,0                             | 841,5     |
| SEÇÃO 27      | 463               | 836,1                | 20,0                             | 839,0     |
| QA03          | 454               | 836,1                | 20,0                             | 838,6     |
| SEÇÃO 26      | 444               | 836,1                | 20,0                             | 837,7     |
| SEÇÃO 3-Campo | 433               | 833,5                | 20,0                             | 837,2     |
| SEÇÃO 24      | 425               | 836,1                | 20,0                             | 836,8     |
| Interpolada   | 421               | 833,6                | 20,0                             | 836,2     |
| SEÇÃO 23      | 416               | 831,1                | 20,0                             | 836,2     |
| SEÇÃO 22      | 406               | 831,1                | 20,0                             | 836,1     |
| SEÇÃO 21      | 397               | 831,1                | 20,0                             | 836,0     |
| QA04          | 387               | 831,1                | 72,0                             | 835,9     |
| SEÇÃO 2-Campo | 370               | 831,1                | 72,0                             | 832,6     |
| SEÇÃO 19      | 369               | 830,0                | 72,0                             | 832,2     |
| SEÇÃO 18      | 358               | 826,1                | 72,0                             | 831,3     |
| SEÇÃO 17      | 348               | 826,1                | 72,0                             | 830,5     |
| SEÇÃO 16      | 338               | 826,1                | 72,0                             | 827,1     |
| SEÇÃO 15      | 328               | 821,1                | 72,0                             | 826,7     |
| QA05          | 319               | 821,1                | 89,0                             | 826,5     |
| SEÇÃO 1-Campo | 308               | 821,1                | 89,0                             | 825,7     |
| SEÇÃO 13      | 299               | 821,1                | 89,0                             | 824,8     |





| Local             | Distância<br>(km) | Cota de<br>Fundo (m) | Vazão Q <sub>MLT</sub><br>(m³/s) | NA<br>(m) |
|-------------------|-------------------|----------------------|----------------------------------|-----------|
| SEÇÃO 12          | 290               | 821,1                | 89,0                             | 823,8     |
| SEÇÃO 11          | 280               | 816,1                | 89,0                             | 823,8     |
| Interpolada       | 275               | 816,1                | 89,0                             | 823,8     |
| SEÇÃO 10          | 270               | 816,1                | 89,0                             | 823,8     |
| QA06              | 261               | 816,1                | 117,0                            | 823,8     |
| SEÇÃO 09          | 253               | 811,1                | 117,0                            | 823,8     |
| QA07              | 247               | 822,1                | 122,0                            | 823,4     |
| SEÇÃO 08          | 237               | 811,1                | 122,0                            | 817,6     |
| PCH ADO POPINHAK  | 220               | 806,1                | 139,3                            | 817,6     |
| S-13              | 218               | 797,3                | 139,3                            | 802,2     |
| S-11              | 215               | 794,0                | 139,3                            | 802,1     |
| S-10              | 213               | 799,5                | 139,3                            | 801,9     |
| S-8               | 208               | 796,5                | 139,3                            | 799,3     |
| S-1- QA09         | 205               | 790,8                | 143,0                            | 799,2     |
| SC-457            | 197               | 793,0                | 143,0                            | 799,1     |
| PCH PERY          | 194               | 796,1                | 145,7                            | 799,0     |
| PRIME18 - QA10    | 194               | 794,0                | 147,0                            | 794,3     |
| STB12             | 193               | 779,0                | 147,0                            | 781,5     |
| STB10             | 190               | 775,7                | 147,0                            | 776,6     |
| STB06             | 187               | 765,2                | 147,0                            | 767,1     |
| STB05             | 186               | 763,2                | 147,0                            | 764,5     |
| Seção - CANOAS    | 182               | 756,1                | 147,0                            | 758,1     |
| QA13              | 180               | 756,1                | 147,0                            | 757,1     |
| Interpolada       | 175               | 750,1                | 147,0                            | 752,6     |
| PRIME17           | 170               | 744,0                | 147,0                            | 744,6     |
| PRIME16           | 158               | 734,0                | 147,0                            | 735,8     |
| QA16              | 154               | 731,1                | 241,0                            | 732,4     |
| PRIME15           | 146               | 716,0                | 241,0                            | 717,9     |
| Seção - SÃO ROQUE | 134               | 706,1                | 247,2                            | 706,5     |
| PRIME13           | 131               | 700,0                | 247,2                            | 705,6     |
| PRIME12           | 123               | 694,0                | 247,2                            | 705,6     |
| SEÇÃO 06          | 116               | 691,1                | 247,2                            | 705,6     |
| Interpolada       | 113               | 688,6                | 247,2                            | 705,6     |
| PRIME11           | 109               | 686,0                | 247,2                            | 705,6     |
| SEÇÃO 05          | 103               | 686,1                | 247,2                            | 705,6     |





| Local            | Distância<br>(km) | Cota de<br>Fundo (m) | Vazão Q <sub>MLT</sub><br>(m³/s) | NA<br>(m) |
|------------------|-------------------|----------------------|----------------------------------|-----------|
| PRIME10          | 89                | 674,0                | 247,2                            | 705,6     |
| UHE GARIBALDI    | 87                | 676,1                | 313,3                            | 705,6     |
| PRIME09          | 84                | 668,0                | 313,3                            | 670,5     |
| SEÇÃO 04         | 78                | 661,1                | 313,3                            | 661,5     |
| PRIME08          | 71                | 652,0                | 313,3                            | 660,3     |
| QA19             | 67                | 656,1                | 315,0                            | 660,3     |
| SEÇÃO 03         | 61                | 656,1                | 315,0                            | 660,3     |
| PRIME07          | 55                | 634,5                | 315,0                            | 660,3     |
| SEÇÃO 02         | 48                | 656,1                | 315,0                            | 660,3     |
| SEÇÃO 01         | 41                | 656,1                | 315,0                            | 660,2     |
| PRIME06          | 33                | 500,0                | 315,0                            | 660,2     |
| PRIME05          | 24                | 487,5                | 315,0                            | 660,2     |
| UHE CAMPOS NOVOS | 21                | 471,1                | 343,4                            | 660,2     |
| PRIME04          | 20                | 472,0                | 343,4                            | 475,7     |
| PRIME03          | 16                | 472,0                | 343,4                            | 474,1     |
| PRIME02 - QA20   | 7                 | 468,0                | 346,0                            | 473,5     |
| PRIME01          | 0                 | 468,0                | 346,0                            | 473,4     |

# 5.1.2. Análise para a Cheia Centenária

Na Figura 5-2 é apresentado o perfil da linha d'água máximo considerando as cheias de projeto com períodos de retorno de 100 anos.





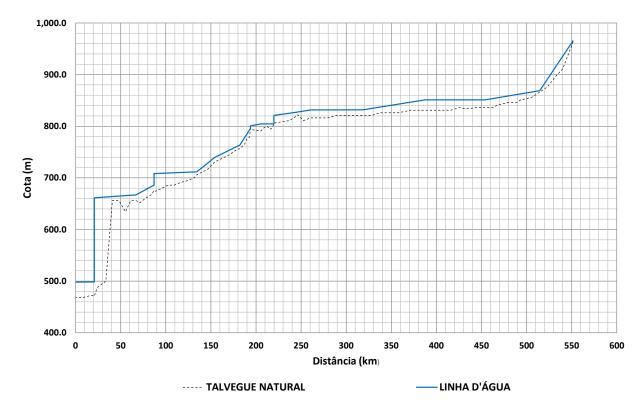



Figura 5-2: Perfil da Linha d'água para a Vazão Q<sub>100</sub> – Cenário Atual

NA Tabela 5-2 apresenta-se o resumo dos resultados obtidos na simulação em diversos pontos do curso do rio Canoas, considerando a vazão máxima obtida da simulação e a cota do pico da cheia de projeto associadas a recorrência de 100 anos.

Tabela 5-2: Vazão Q<sub>100</sub> – Cenário Atual

| Local            | Distância (km) | Vazão Q <sub>100</sub><br>(m³/s) | NA<br>(m) |
|------------------|----------------|----------------------------------|-----------|
| QA01             | 552            | 21                               | 965,4     |
| QA02             | 515            | 190                              | 868,8     |
| QA03             | 454            | 309                              | 851,1     |
| QA04             | 387            | 152                              | 851,1     |
| QA05             | 319            | 429                              | 831,8     |
| QA06             | 261            | 616                              | 831,6     |
| QA07             | 247            | 753                              | 827,5     |
| PCH ADO POPINHAK | 220            | 1211                             | 820,8     |
| PCH ADO POPINHAK | 220            | 1211                             | 804,4     |
| QA09             | 205            | 1404                             | 804,4     |
| PCH PERY         | 194            | 1556                             | 800,8     |
| PCH PERT         | 194            | 1556                             | 795,3     |
| QA10             | 194            | 1556                             | 795,3     |
| Seção - CANOAS   | 182            | 1596                             | 763,1     |





| Local               | Distância (km) | Vazão Q <sub>100</sub><br>(m³/s) | NA<br>(m) |
|---------------------|----------------|----------------------------------|-----------|
| QA13                | 180            | 1597                             | 761,9     |
| QA16                | 154            | 3296                             | 739,8     |
| Seção - SÃO ROQUE   | 134            | 3624                             | 711,8     |
| LILLE CARIDAL DI    | 87             | 5426                             | 708,3     |
| UHE GARIBALDI       | 87             | 5426                             | 686,0     |
| QA19                | 67             | 5643                             | 667,2     |
| LILLE CANADOS NOVOS | 21             | 6242                             | 661,4     |
| UHE CAMPOS NOVOS    | 21             | 6242                             | 498,5     |
| JUSANTE             | 0              | 6399                             | 492,0     |

Nas Figura 5-3; Figura 5-4; Figura 5-5 e Figura 5-6 são apresentadas as composições dos hidrogramas de cheias com recorrência de 100 anos em diversas seções existentes ao longo do curso do rio Canoas onde estão incluídos os locais dos 4 aproveitamentos hidrelétricos em operação e, em detalhe, nas Figura 5-7; Figura 5-8; Figura 5-9 e Figura 5-10 são apresentados os cotagramas obtidos nos locais dos quatro barramentos.

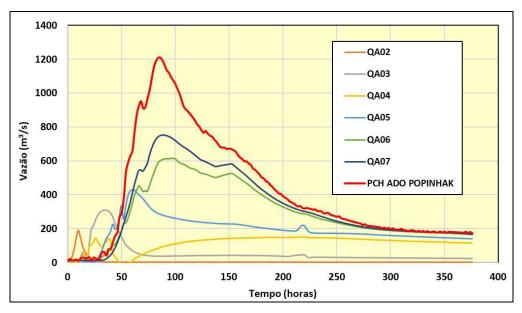



Figura 5-3: Cheias Centenárias: Montante da PCH Ado Popinhak – Cenário Atual



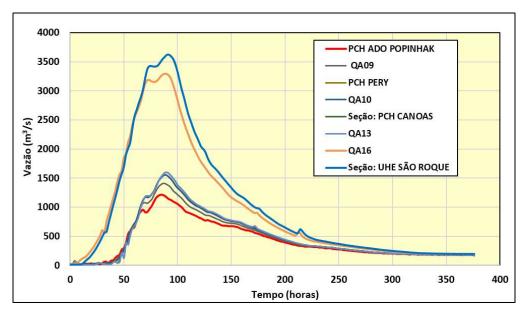



Figura 5-4: Cheias Centenárias: PCH Ado Popinhak a Seção São Roque — Cenário Atual

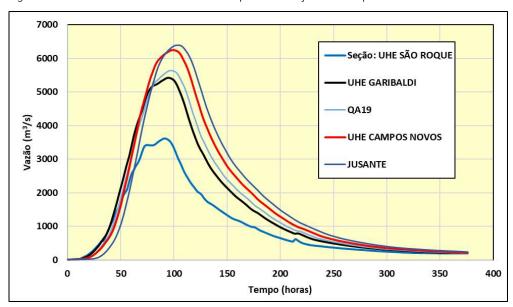



Figura 5-5: Cheias Centenárias: Seção Roque a Seção de Jusante – Cenário Atual



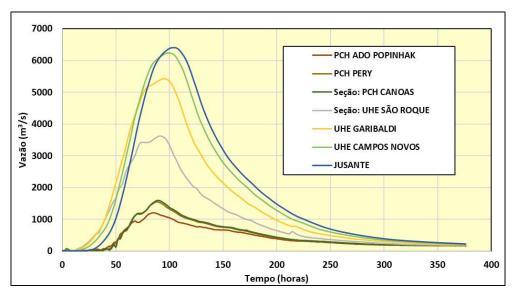



Figura 5-6: Cheias Centenárias: Hidrogramas nos Eixos dos barramentos – Cenário Atual

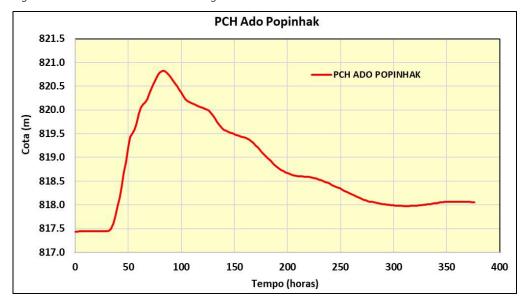



Figura 5-7: Cheia Centenária: PCH Ado Popinhak – Cenário Atual



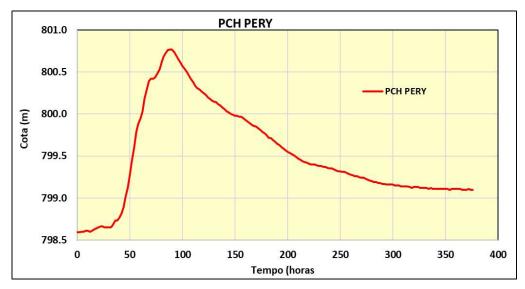



Figura 5-8: Cheia Centenária – PCH Pery – Cenário Atual

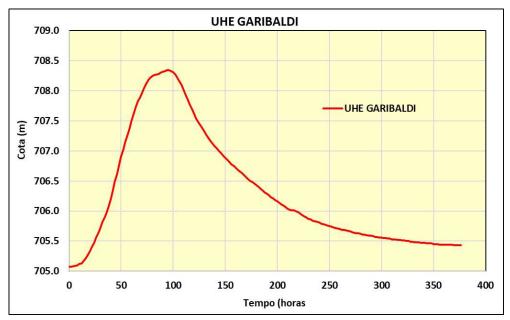



Figura 5-9: Cheia Centenária: UHE Garibaldi – Cenário Atual



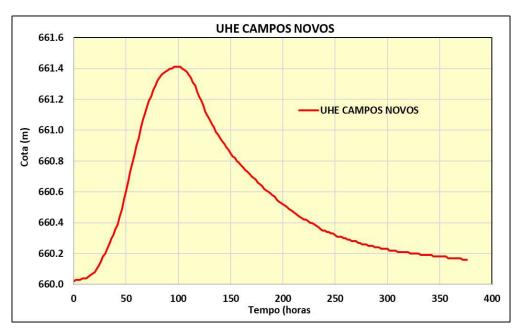



Figura 5-10: Cheia Centenária: UHE Campos Novos – Cenário Atual

# 5.1.3. Análise para a Cheia Milenar – Cenário Atual

Na Figura 5-11 é apresentado o perfil da linha d'água considerando a cheia com período de recorrência de 1000 anos.

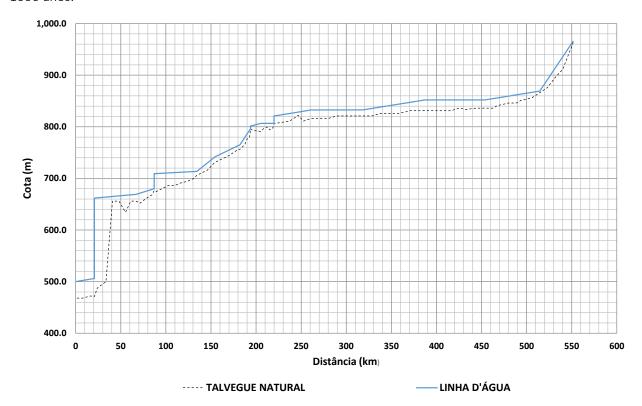



Figura 5-11: Perfil da Linha d'água para a Vazão Q<sub>1.000</sub> – Cenário Atual



Na Tabela 5-3 apresenta-se o resumo dos resultados obtidos na simulação em diversos pontos do curso do rio Canoas considerando a vazão máxima obtida da simulação e a cota do pico da cheia de projeto associadas a recorrência de 1.000 anos.

Tabela 5-3: Vazão Q<sub>1.000</sub> – Cenário Atual

| Local              | Distância<br>(m) | Vazão<br>Q <sub>1.000</sub><br>(m3/s) | NA<br>(m) |
|--------------------|------------------|---------------------------------------|-----------|
| QA01               | 552              | 27                                    | 965,65    |
| QA02               | 515              | 247                                   | 869,26    |
| QA03               | 454              | 421                                   | 852,04    |
| QA04               | 387              | 188                                   | 852,04    |
| QA05               | 319              | 542                                   | 832,80    |
| QA06               | 261              | 870                                   | 832,57    |
| QA07               | 247              | 1061                                  | 828,37    |
| DCIT ADO DODINITAK | 220              | 1706                                  | 820,82    |
| PCH ADO POPINHAK   | 220              | 1706                                  | 806,57    |
| QA09               | 205              | 1977                                  | 806,57    |
| PCH PERY           | 194              | 2457                                  | 801,45    |
| PCHPERT            | 194              | 2457                                  | 795,67    |
| QA10               | 194              | 2457                                  | 795,67    |
| Seção - CANOAS     | 182              | 2513                                  | 764,55    |
| QA13               | 180              | 2513                                  | 763,33    |
| QA16               | 154              | 4884                                  | 741,74    |
| Seção - SÃO ROQUE  | 134              | 5317                                  | 713,50    |
| UHE GARIBALDI      | 87               | 7778                                  | 709,16    |
| UHE GARIBALDI      | 87               | 7778                                  | 680,00    |
| QA19               | 67               | 8063                                  | 669,15    |
| UHE CAMPOS NOVOS   | 21               | 8912                                  | 661,76    |
| UTE CAIVIPUS NUVUS | 21               | 8912                                  | 506,13    |
| JUSANTE            | 0                | 9101                                  | 500,00    |

Da Figura 5-12 à Figura 5-15 são apresentadas as composições dos hidrogramas de cheias com recorrência de 1000 anos em diversas seções existentes ao longo do curso do rio Canoas onde estão incluídos os locais dos 4 aproveitamentos hidrelétricos em operação e, da Figura 5-16 à Figura 5-19 são apresentados os cotagramas obtidos nos locais desses quatro aproveitamentos.





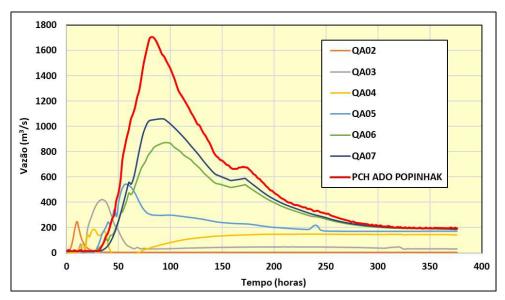



Figura 5-12: Cheias Milenares: Montante da PCH Ado Popinhak – Cenário Atual

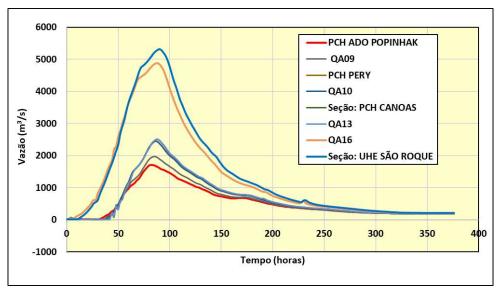



Figura 5-13: Cheias Milenares: PCH Ado Propinhak a Seção São Roque — Cenário Atual



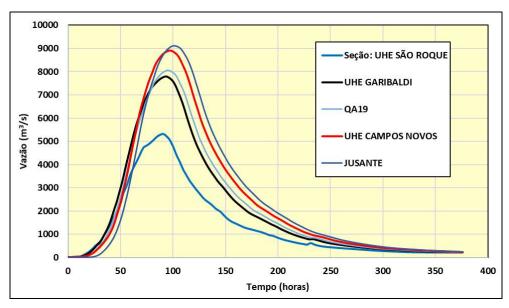



Figura 5-14: Cheias Milenares: Seção São Roque a Seção Jusante – Cenário Atual

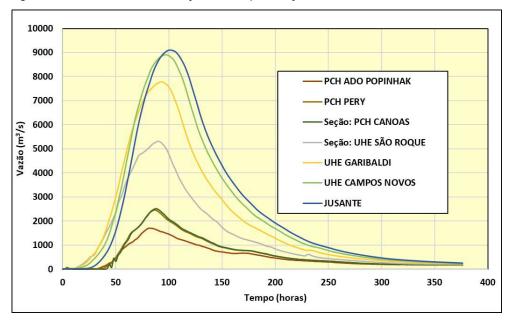



Figura 5-15: Cheias Milienares: Hidrogramas nos Eixos dos barramentos – Cenário Atual



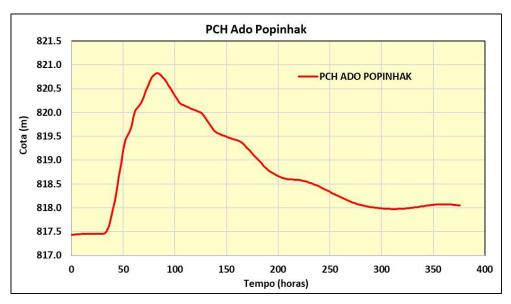



Figura 5-16: Cheia Milenar: PCH Ado Propinhak – Cenário Atual

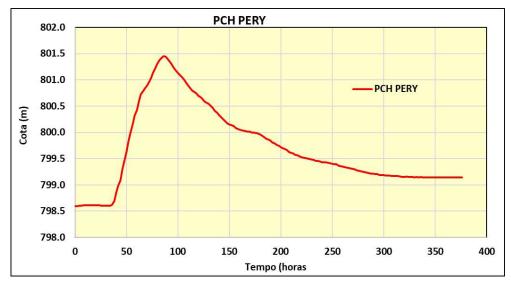



Figura 5-17: Cheia Milenar: PCH Pery – Cenário Atual



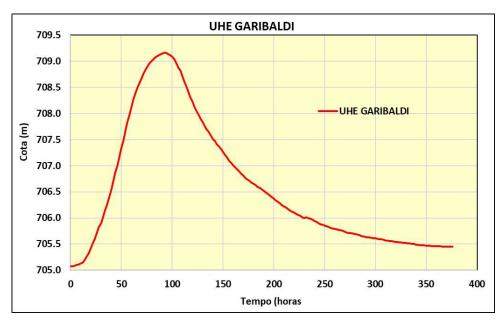



Figura 5-18: Cheia Milenar: UHE Garibaldi – Cenário Atual

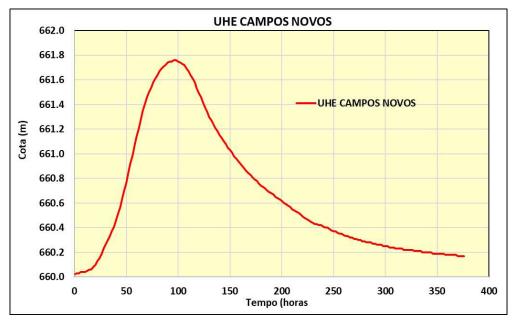



Figura 5-19: Cheia Milenar: UHE Campos Novos – Cenário Atual

# 5.2. Simulação de Curto Prazo

A seguir são apresentados os resultados da simulação considerando o cenário de curto prazo, onde se prevê a operação do arranjo hidráulico formado pela presença dos seguintes aproveitamentos: PCH Ado Popinhak, PCH Pery, UHE São Roque, UHE Garibaldi UHE e UHE Campos Novos.

# 5.2.1. Análise para a Vazão Média de Longo Termo (QMLT)

Na Figura 5-20 é apresentado o perfil da linha d'água considerando a afluência da vazão Q<sub>MLT</sub>.



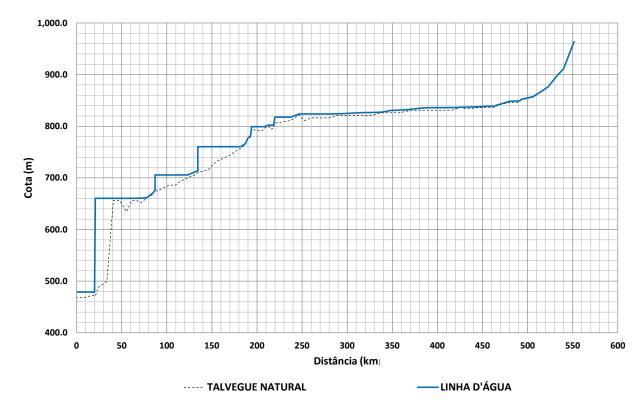



Figura 5-20: Perfil da Linha d'água para a Vazão Q<sub>MLT</sub> – Cenário Curto Prazo

Na Tabela 5-4 é apresentado um resumo dos resultados obtidos na simulação obtidos em diversos pontos do curso do rio Canoas considerando a veiculação da vazão Q<sub>MLT</sub>.

Tabela 5-4: Vazão Q<sub>MLT</sub> – Cenário Curto Prazo

| Local         | Distância<br>(km) | Cota de<br>Fundo<br>(m) | Vazão Q <sub>MLT</sub><br>(m³/s) | NA<br>(m) |
|---------------|-------------------|-------------------------|----------------------------------|-----------|
| SEÇÃO 5-Campo | 552               | 963,0                   | 3,0                              | 963,6     |
| SEÇÃO 35      | 540               | 911,1                   | 3,0                              | 911,8     |
| SEÇÃO 34      | 532               | 896,1                   | 3,0                              | 896,2     |
| SEÇÃO 33      | 523               | 876,1                   | 3,0                              | 876,8     |
| QA02          | 515               | 866,1                   | 20,0                             | 866,5     |
| SEÇÃO 32      | 506               | 856,1                   | 20,0                             | 857,2     |
| Interpolada   | 503               | 854,8                   | 20,0                             | 856,0     |
| Interpolada   | 500               | 853,6                   | 20,0                             | 854,8     |
| Interpolada   | 496               | 852,3                   | 20,0                             | 853,6     |
| SEÇÃO 31      | 493               | 851,1                   | 20,0                             | 852,2     |
| SEÇÃO 4-Campo | 491               | 847,7                   | 20,0                             | 849,2     |
| SEÇÃO 30      | 488               | 846,1                   | 20,0                             | 848,8     |
| Interpolada   | 484               | 846,1                   | 20,0                             | 848,5     |
| SEÇÃO 29      | 480               | 846,1                   | 20,0                             | 848,1     |





| Local            | Distância<br>(km) | Cota de<br>Fundo<br>(m) | Vazão Q <sub>MLT</sub><br>(m³/s) | NA<br>(m) |
|------------------|-------------------|-------------------------|----------------------------------|-----------|
| SEÇÃO 28         | 468               | 841,1                   | 20,0                             | 841,7     |
| SEÇÃO 27         | 463               | 836,1                   | 20,0                             | 839,0     |
| QA03             | 454               | 836,1                   | 20,0                             | 838,6     |
| SEÇÃO 26         | 444               | 836,1                   | 20,0                             | 837,7     |
| SEÇÃO 3-Campo    | 433               | 833,5                   | 20,0                             | 837,2     |
| SEÇÃO 24         | 425               | 836,1                   | 20,0                             | 836,8     |
| Interpolada      | 421               | 833,6                   | 20,0                             | 836,2     |
| SEÇÃO 23         | 416               | 831,1                   | 20,0                             | 836,2     |
| SEÇÃO 22         | 406               | 831,1                   | 20,0                             | 836,1     |
| SEÇÃO 21         | 397               | 831,1                   | 20,0                             | 836,0     |
| QA04             | 387               | 831,1                   | 72,0                             | 835,9     |
| SEÇÃO 2-Campo    | 370               | 831,1                   | 72,0                             | 832,8     |
| SEÇÃO 19         | 369               | 830,0                   | 72,0                             | 832,3     |
| SEÇÃO 18         | 358               | 826,1                   | 72,0                             | 831,3     |
| SEÇÃO 17         | 348               | 826,1                   | 72,0                             | 830,5     |
| SEÇÃO 16         | 338               | 826,1                   | 72,0                             | 827,3     |
| SEÇÃO 15         | 328               | 821,1                   | 72,0                             | 826,7     |
| QA05             | 319               | 821,1                   | 89,0                             | 826,5     |
| SEÇÃO 1-Campo    | 308               | 821,1                   | 89,0                             | 825,7     |
| SEÇÃO 13         | 299               | 821,1                   | 89,0                             | 824,8     |
| SEÇÃO 12         | 290               | 821,1                   | 89,0                             | 823,9     |
| SEÇÃO 11         | 280               | 816,1                   | 89,0                             | 823,8     |
| Interpolada      | 275               | 816,1                   | 89,0                             | 823,8     |
| SEÇÃO 10         | 270               | 816,1                   | 89,0                             | 823,8     |
| QA06             | 261               | 816,1                   | 117,0                            | 823,8     |
| SEÇÃO 09         | 253               | 811,1                   | 117,0                            | 823,8     |
| QA07             | 247               | 822,1                   | 122,0                            | 823,7     |
| SEÇÃO 08         | 237               | 811,1                   | 122,0                            | 817,6     |
| PCH ADO POPINHAK | 220               | 806,1                   | 139,3                            | 817,6     |
| S-13             | 218               | 797,3                   | 139,3                            | 802,2     |
| S-11             | 215               | 794,0                   | 139,3                            | 802,1     |
| S-10             | 213               | 799,5                   | 139,3                            | 802,0     |
| S-8              | 208               | 796,5                   | 139,3                            | 799,4     |
| S-1- QA09        | 205               | 790,8                   | 143,0                            | 799,2     |





| Local            | Distância<br>(km) | Cota de<br>Fundo<br>(m) | Vazão Q <sub>MLT</sub><br>(m³/s) | NA<br>(m) |
|------------------|-------------------|-------------------------|----------------------------------|-----------|
| SC-457           | 197               | 793,0                   | 143,0                            | 799,1     |
| PCH PERY         | 194               | 796,1                   | 145,7                            | 799,0     |
| PRIME18 - QA10   | 194               | 794,0                   | 147,0                            | 794,5     |
| STB12            | 193               | 779,0                   | 147,0                            | 781,5     |
| STB10            | 190               | 775,7                   | 147,0                            | 776,8     |
| STB06            | 187               | 765,2                   | 147,0                            | 767,1     |
| STB05            | 186               | 763,2                   | 147,0                            | 764,8     |
| Seção - CANOAS   | 182               | 756,1                   | 147,1                            | 760,5     |
| QA13             | 180               | 756,1                   | 147,0                            | 760,5     |
| Interpolada      | 175               | 750,1                   | 147,0                            | 760,5     |
| PRIME17          | 170               | 744,0                   | 147,0                            | 760,5     |
| PRIME16          | 158               | 734,0                   | 147,0                            | 760,5     |
| QA16             | 154               | 731,1                   | 241,0                            | 760,5     |
| PRIME15          | 146               | 716,0                   | 241,0                            | 760,5     |
| UHE SÃO ROQUE    | 134               | 710,0                   | 241,0                            | 760,5     |
| PRIME13          | 131               | 706,1                   | 247,2                            | 712,0     |
| PRIME12          | 123               | 700,0                   | 247,2                            | 705,6     |
| SEÇÃO 06         | 116               | 694,0                   | 247,2                            | 705,6     |
| Interpolada      | 113               | 691,1                   | 247,2                            | 705,6     |
| PRIME11          | 109               | 686,0                   | 247,2                            | 705,6     |
| SEÇÃO 05         | 103               | 686,1                   | 247,2                            | 705,6     |
| PRIME10          | 89                | 674,0                   | 247,2                            | 705,6     |
| UHE GARIBALDI    | 87                | 676,1                   | 313,3                            | 705,6     |
| PRIME09          | 84                | 668,0                   | 313,3                            | 670,5     |
| SEÇÃO 04         | 78                | 661,1                   | 313,3                            | 661,7     |
| PRIME08          | 71                | 652,0                   | 313,3                            | 660,5     |
| QA19             | 67                | 656,1                   | 315,0                            | 660,5     |
| SEÇÃO 03         | 61                | 656,1                   | 315,0                            | 660,5     |
| PRIME07          | 55                | 634,5                   | 315,0                            | 660,5     |
| SEÇÃO 02         | 48                | 656,1                   | 315,0                            | 660,5     |
| SEÇÃO 01         | 41                | 656,1                   | 315,0                            | 660,4     |
| PRIME06          | 33                | 500,0                   | 315,0                            | 660,4     |
| PRIME05          | 24                | 487,5                   | 315,0                            | 660,4     |
| UHE CAMPOS NOVOS | 21                | 471,1                   | 343,4                            | 660,4     |





| Local          | Distância<br>(km) | Cota de<br>Fundo<br>(m) | Vazão Q <sub>MLT</sub><br>(m³/s) | NA<br>(m) |
|----------------|-------------------|-------------------------|----------------------------------|-----------|
| PRIME04        | 20                | 472,0                   | 343,4                            | 478,9     |
| PRIME03        | 16                | 472,0                   | 343,4                            | 478,8     |
| PRIME02 - QA20 | 7                 | 468,0                   | 346,0                            | 478,8     |
| PRIME01        | 0                 | 468,0                   | 346,0                            | 478,8     |

# 5.2.2. Análise para a Cheia Centenária

Na Figura 5-21 é apresentado o perfil da linha d'água considerando as cheias de projeto com períodos de recorrência de 100 anos.

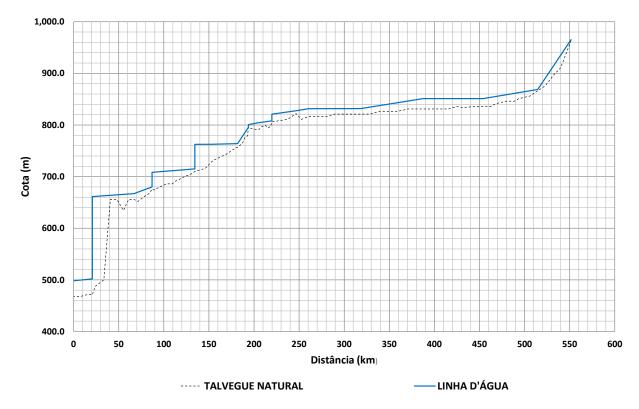



Figura 5-21: Perfil da Linha d'água para a Vazão Q<sub>100</sub> – Cenário Curto Prazo

Na Tabela 5-5: Vazão  $Q_{100}$  – Cenário Curto Prazo apresenta-se o resumo dos resultados obtidos na simulação em diversos pontos do curso do rio Canoas considerando a vazão máxima obtida da simulação e a cota do pico das cheias associadas a uma recorrência de 100 anos.

Tabela 5-5: Vazão Q<sub>100</sub> — Cenário Curto Prazo

| Local | Distância<br>(km) | Vazão Q <sub>100</sub><br>(m³/s) | NA<br>(m) |
|-------|-------------------|----------------------------------|-----------|
| QA01  | 552               | 21                               | 965,3     |
| QA02  | 515               | 190                              | 868,8     |
| QA03  | 454               | 309                              | 851,1     |





| Local            | Distância<br>(km) | Vazão Q <sub>100</sub><br>(m³/s) | NA<br>(m) |
|------------------|-------------------|----------------------------------|-----------|
| QA04             | 387               | 152                              | 851,1     |
| QA05             | 319               | 429                              | 831,8     |
| QA06             | 261               | 616                              | 831,6     |
| QA07             | 247               | 753                              | 827,5     |
| PCH ADO POPINHAK | 220               | 1211                             | 820,8     |
|                  | 220               | 1211                             | 808,0     |
| QA09             | 205               | 1404                             | 804,4     |
| DCI DEDV         | 194               | 1556                             | 8,008     |
| PCH PERY         | 194               | 1556                             | 795,3     |
| QA10             | 194               | 1556                             | 795,3     |
| Seção - CANOAS   | 182               | 1596                             | 764,3     |
| QA13             | 180               | 1597                             | 763,8     |
| QA16             | 154               | 3299                             | 762,6     |
| UHE SÃO ROQUE    | 134               | 3607                             | 762,6     |
|                  | 134               | 3607                             | 715,0     |
| UHE GARIBALDI    | 87                | 5408                             | 708,3     |
|                  | 87                | 5408                             | 680,0     |
| QA19             | 67                | 5263                             | 667,1     |
| UHE CAMPOS NOVOS | 21                | 6229                             | 661,4     |
|                  | 21                | 6229                             | 502,0     |
| JUSANTE          | 0                 | 6377                             | 498,4     |

Da Figura 5-22 à Figura 5-25 são apresentadas as composições dos hidrogramas de cheias com recorrência de 100 anos em diversas seções existentes ao longo do curso do rio Canoas e, da Figura 5-26 à Figura 5-30, os cotagramas obtidos nos locais dos barramentos.





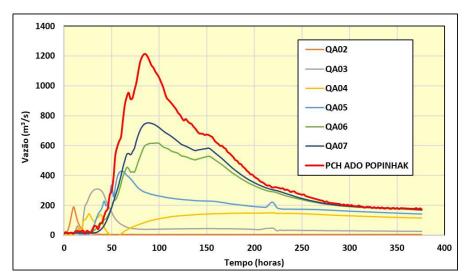



Figura 5-22: Cheias Centenárias: Montante da PCH Ado Popinhak – Cenário Curto Prazo

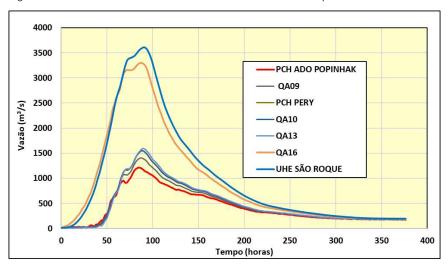



Figura 5-23: Cheias Centenárias: PCH Ado Popinhak a UHE São Roque – Cenário Curto Prazo

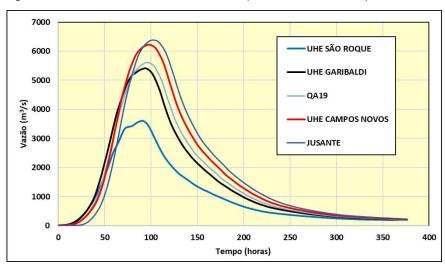



Figura 5-24: Cheias Centenárias: UHE São Roque à Seção Jusante — Cenário Curto Prazo



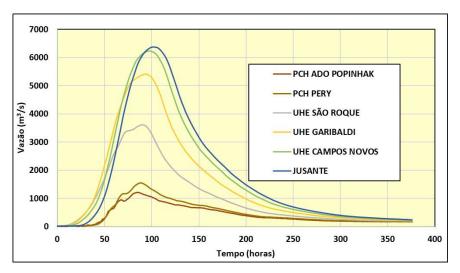



Figura 5-25: Cheias Centenárias: Hidrogramas nos Eixos dos barramentos — Cenário Curto Prazo

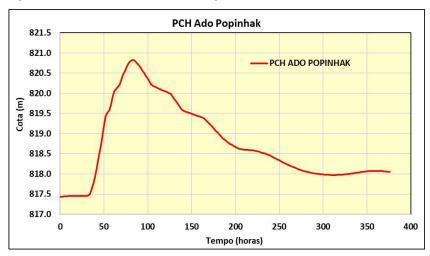



Figura 5-26: Cheia Centenária: PCH Ado Propinhak – Cenário Curto Prazo

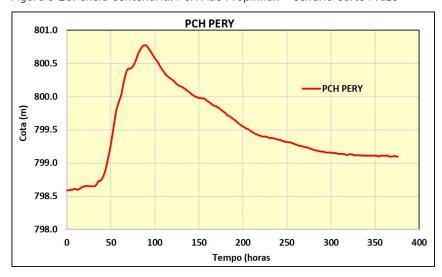



Figura 5-27: Cheia Centenária: PCH Pery – Cenário Curto Prazo



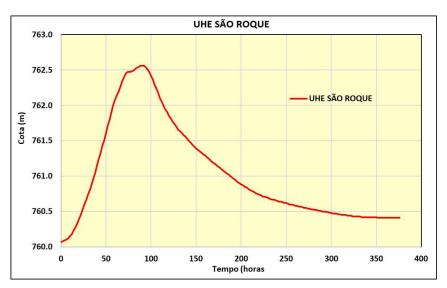



Figura 5-28: Cheia Centenária: UHE São Roque – Cenário Curto Prazo

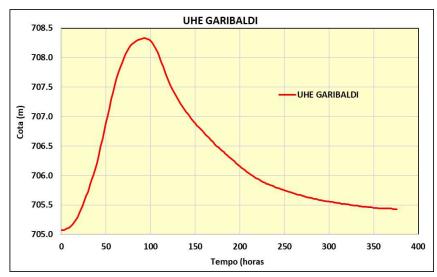



Figura 5-29: Cheia Centenária: UHE Garibaldi – Cenário Curto Prazo

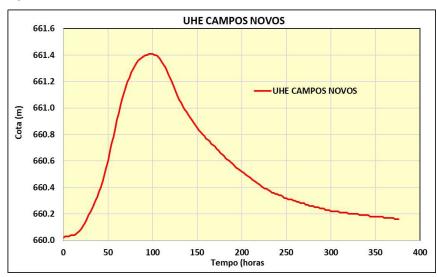



Figura 5-30: Cheia Centenária: UHE Campos Novos – Cenário Curto Prazo



# 5.2.3. Análise para a Cheia Milenar – Cenário de Curto Prazo

Na Figura 5-31 é apresentado o perfil da linha d'água considerando as cheias de projeto com períodos de recorrência de 1000 anos.

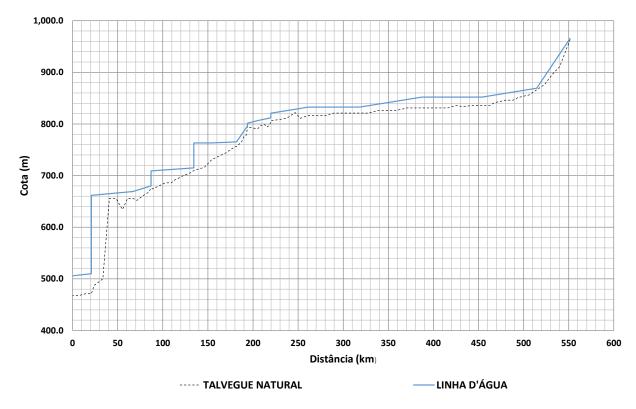



Figura 5-31: Perfil da Linha d'água para a Vazão Q<sub>1000</sub> – Cenário Curto Prazo

Na Tabela 5-6 é apresentado um resumo dos resultados obtidos na simulação em diversos pontos do rio Canoas considerando a vazão máxima obtida da simulação e a cota do pico das cheias associadas a uma recorrência de 1000 anos.

Tabela 5-6: Vazão Q<sub>1000</sub> – Cenário Curto Prazo

| Local            | Distância<br>(m) | Vazão Q <sub>100</sub><br>(m³/s) | NA<br>(m) |
|------------------|------------------|----------------------------------|-----------|
| QA01             | 552              | 27                               | 965,6     |
| QA02             | 515              | 247                              | 869,3     |
| QA03             | 454              | 421                              | 852,0     |
| QA04             | 387              | 188                              | 852,0     |
| QA05             | 319              | 542                              | 832,8     |
| QA06             | 261              | 871                              | 832,6     |
| QA07             | 247              | 1061                             | 828,4     |
| PCH ADO POPINHAK | 220              | 1706                             | 820,8     |
|                  | 220              | 1706                             | 812,0     |
| QA09             | 205              | 1977                             | 806,6     |
| PCH PERY         | 194              | 2457                             | 801,5     |





| Local            | Distância<br>(m) | Vazão Q <sub>100</sub><br>(m³/s) | NA<br>(m) |
|------------------|------------------|----------------------------------|-----------|
|                  | 194              | 2457                             | 795,7     |
| QA10             | 194              | 2457                             | 795,7     |
| Seção - CANOAS   | 182              | 2513                             | 765,8     |
| QA13             | 180              | 2513                             | 765,2     |
| QA16             | 154              | 4889                             | 763,3     |
| UHE SÃO ROQUE    | 134              | 5286                             | 763,2     |
|                  | 134              | 5286                             | 715,0     |
| UHE GARIBALDI    | 87               | 7758                             | 709,2     |
|                  | 87               | 7758                             | 680,0     |
| QA19             | 67               | 8033                             | 669,1     |
| UHE CAMPOS NOVOS | 21               | 8895                             | 661,8     |
|                  | 21               | 8895                             | 510,0     |
| JUSANTE          | 0                | 9080                             | 506,1     |

Da Figura 5-32 à Figura 5-35 são apresentados os hidrogramas de cheias com recorrência de 1000 anos nas diversas seções ao longo do curso do rio Canoas e, da Figura 5-36 à Figura 5-40, os cotagramas obtidos nos locais dos aproveitamentos hidrelétricos.

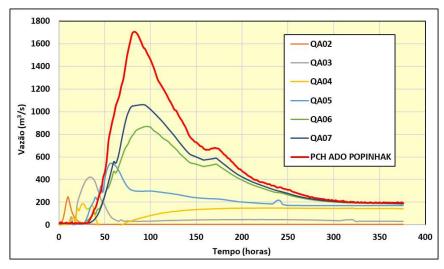



Figura 5-32: Cheias Milenares: Montante da PCH Ado Popinhak – Cenário Curto Prazo



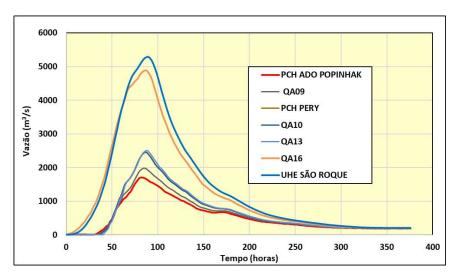



Figura 5-33: Cheias Milenares: PCH Ado Popinhak a UHE São Roque — Cenário Curto Prazo

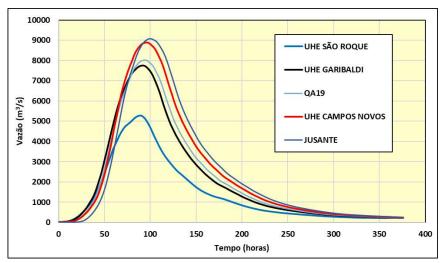



Figura 5-34: Cheias Milenares: UHE São Roque a Seção Jusante – Cenário Curto Prazo

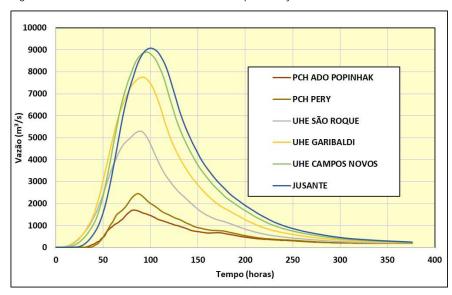



Figura 5-35: Cheias Milenares: Hidrogramas nos Eixos dos barramentos – Cenário Curto Prazo



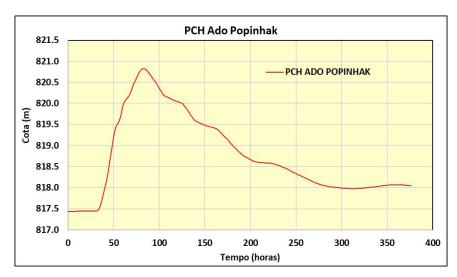



Figura 5-36: Cheia Milenar: PCH Ado Propinhak – Cenário Curto Prazo

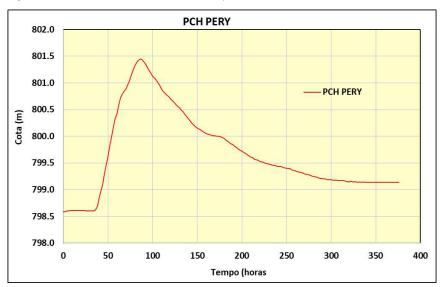



Figura 5-37: Cheia Milenar: PCH Pery – Cenário Curto Prazo

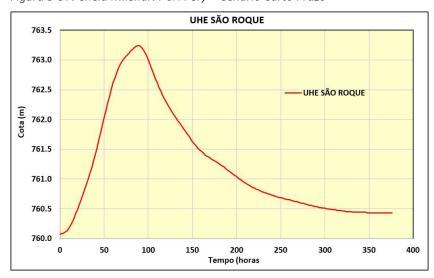



Figura 5-38: Cheia Milenar: UHE São Roque – Cenário Curto Prazo



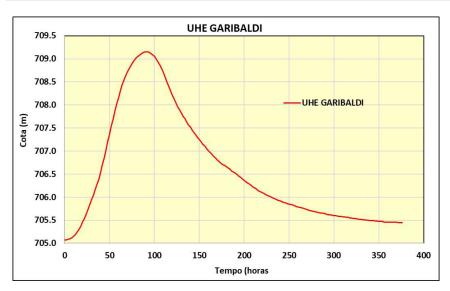



Figura 5-39: Cheia Milenar: UHE Garibaldi – Cenário Curto Prazo

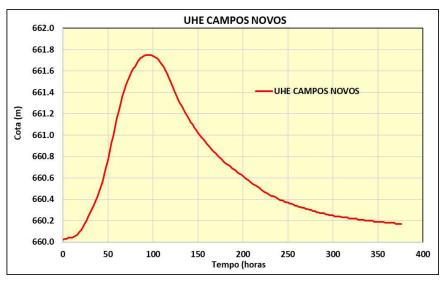



Figura 5-40: Cheia Milenar: UHE Campos Novos – Cenário Curto Prazo

# 5.3. Simulação do Cenário de Médio Prazo - 2030

A seguir são apresentados os resultados da simulação considerando a presença dos seis aproveitamentos: PCH Ado Popinhak, PCH Pery, PCH Canoas, UHE São Roque, UHE Garibaldi e UHE Campos Novos.

# 5.3.1. Análise para a Vazão Média de Longo Termo (Q<sub>MLT</sub>)

Na Figura 5-41 é apresentado o perfil da linha d'água considerando a afluência da vazão média de longo termo  $(Q_{MLT})$ .



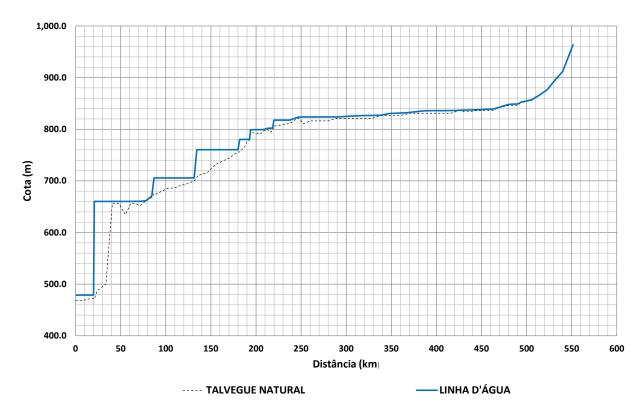



Figura 5-41: Perfil da Linha d'água para a Vazão Q<sub>MLT</sub> – Cenário Médio Prazo

Na Tabela 5-7 apresenta-se o resumo dos resultados obtidos da simulação em diversos pontos do curso do rio Canoas considerando a veiculação da vazão  $Q_{\text{MLT}}$ .

Tabela 5-7: Vazão Q<sub>MLT</sub> — Cenário Médio Prazo

| Local         | Distância<br>(m) | Cota de<br>Fundo<br>(m) | Vazão Q <sub>MLT</sub><br>(m³/s) | NA<br>(m) |
|---------------|------------------|-------------------------|----------------------------------|-----------|
| SEÇÃO 5-Campo | 552              | 963,0                   | 3,0                              | 963,4     |
| SEÇÃO 35      | 540              | 911,1                   | 3,0                              | 911,8     |
| SEÇÃO 34      | 532              | 896,1                   | 3,0                              | 896,2     |
| SEÇÃO 33      | 523              | 876,1                   | 3,0                              | 876,8     |
| QA02          | 515              | 866,1                   | 20,0                             | 866,5     |
| SEÇÃO 32      | 506              | 856,1                   | 20,0                             | 857,2     |
| Interpolada   | 503              | 854,8                   | 20,0                             | 856,0     |
| Interpolada   | 500              | 853,6                   | 20,0                             | 854,7     |
| Interpolada   | 496              | 852,3                   | 20,0                             | 853,6     |
| SEÇÃO 31      | 493              | 851,1                   | 20,0                             | 852,1     |
| SEÇÃO 4-Campo | 491              | 847,7                   | 20,0                             | 849,1     |
| SEÇÃO 30      | 488              | 846,1                   | 20,0                             | 848,8     |
| Interpolada   | 484              | 846,1                   | 20,0                             | 848,5     |
| SEÇÃO 29      | 480              | 846,1                   | 20,0                             | 848,1     |





| Local            | Distância<br>(m) | Cota de<br>Fundo<br>(m) | Vazão Q <sub>MLT</sub><br>(m³/s) | NA<br>(m) |
|------------------|------------------|-------------------------|----------------------------------|-----------|
| SEÇÃO 28         | 468              | 841,1                   | 20,0                             | 841,5     |
| SEÇÃO 27         | 463              | 836,1                   | 20,0                             | 839,0     |
| QA03             | 454              | 836,1                   | 20,0                             | 838,6     |
| SEÇÃO 26         | 444              | 836,1                   | 20,0                             | 837,7     |
| SEÇÃO 3-Campo    | 433              | 833,5                   | 20,0                             | 837,2     |
| SEÇÃO 24         | 425              | 836,1                   | 20,0                             | 836,8     |
| Interpolada      | 421              | 833,6                   | 20,0                             | 836,2     |
| SEÇÃO 23         | 416              | 831,1                   | 20,0                             | 836,2     |
| SEÇÃO 22         | 406              | 831,1                   | 20,0                             | 836,1     |
| SEÇÃO 21         | 397              | 831,1                   | 20,0                             | 836,0     |
| QA04             | 387              | 831,1                   | 72,0                             | 835,9     |
| SEÇÃO 2-Campo    | 370              | 831,1                   | 72,0                             | 832,6     |
| SEÇÃO 19         | 369              | 830,0                   | 72,0                             | 832,2     |
| SEÇÃO 18         | 358              | 826,1                   | 72,0                             | 831,3     |
| SEÇÃO 17         | 348              | 826,1                   | 72,0                             | 830,5     |
| SEÇÃO 16         | 338              | 826,1                   | 72,0                             | 827,1     |
| SEÇÃO 15         | 328              | 821,1                   | 72,0                             | 826,7     |
| QA05             | 319              | 821,1                   | 89,0                             | 826,5     |
| SEÇÃO 1-Campo    | 308              | 821,1                   | 89,0                             | 825,7     |
| SEÇÃO 13         | 299              | 821,1                   | 89,0                             | 824,8     |
| SEÇÃO 12         | 290              | 821,1                   | 89,0                             | 823,8     |
| SEÇÃO 11         | 280              | 816,1                   | 89,0                             | 823,8     |
| Interpolada      | 275              | 816,1                   | 89,0                             | 823,8     |
| SEÇÃO 10         | 270              | 816,1                   | 89,0                             | 823,8     |
| QA06             | 261              | 816,1                   | 117,0                            | 823,8     |
| SEÇÃO 09         | 253              | 811,1                   | 117,0                            | 823,8     |
| QA07             | 247              | 822,1                   | 122,0                            | 823,4     |
| SEÇÃO 08         | 237              | 811,1                   | 122,0                            | 817,6     |
| PCH ADO POPINHAK | 220              | 806,1                   | 139,3                            | 817,6     |
| S-13             | 218              | 797,3                   | 139,3                            | 802,2     |
| S-11             | 215              | 794,0                   | 139,3                            | 802,1     |
| S-10             | 213              | 799,5                   | 139,3                            | 801,9     |
| S-8              | 208              | 796,5                   | 139,3                            | 799,3     |
| S-1- QA09        | 205              | 790,8                   | 143,0                            | 799,2     |





| Local            | Distância<br>(m) | Cota de<br>Fundo<br>(m) | Vazão Q <sub>MLT</sub><br>(m³/s) | NA<br>(m) |
|------------------|------------------|-------------------------|----------------------------------|-----------|
| SC-457           | 197              | 793,0                   | 143,0                            | 799,1     |
| PCH PERY         | 194              | 796,1                   | 145,7                            | 799,0     |
| PRIME18 - QA10   | 194              | 794,0                   | 147,0                            | 794,4     |
| STB12            | 193              | 779,0                   | 147,0                            | 780,4     |
| STB10            | 190              | 775,7                   | 147,0                            | 780,2     |
| STB06            | 187              | 765,2                   | 147,0                            | 780,2     |
| STB05            | 186              | 763,2                   | 147,0                            | 780,2     |
| PCH CANOAS       | 182              | 756,1                   | 147,1                            | 780,2     |
| QA13             | 180              | 756,1                   | 147,0                            | 760,5     |
| Interpolada      | 175              | 750,1                   | 147,0                            | 760,5     |
| PRIME17          | 170              | 744,0                   | 147,0                            | 760,5     |
| PRIME16          | 158              | 734,0                   | 147,0                            | 760,5     |
| QA16             | 154              | 731,1                   | 241,0                            | 760,5     |
| PRIME15          | 146              | 716,0                   | 241,0                            | 760,5     |
| UHE SÃO ROQUE    | 135              | 710,0                   | 241,0                            | 760,5     |
| PRIME13          | 134              | 706,1                   | 247,2                            | 760,5     |
| PRIME12          | 131              | 700,0                   | 247,2                            | 705,6     |
| SEÇÃO 06         | 123              | 694,0                   | 247,2                            | 705,6     |
| Interpolada      | 116              | 691,1                   | 247,2                            | 705,6     |
| PRIME11          | 109              | 686,0                   | 247,2                            | 705,6     |
| SEÇÃO 05         | 103              | 686,1                   | 247,2                            | 705,6     |
| PRIME10          | 89               | 674,0                   | 247,2                            | 705,6     |
| UHE GARIBALDI    | 87               | 676,1                   | 313,3                            | 705,6     |
| PRIME09          | 84               | 668,0                   | 313,3                            | 670,5     |
| SEÇÃO 04         | 78               | 661,1                   | 313,3                            | 661,5     |
| PRIME08          | 71               | 652,0                   | 313,3                            | 660,3     |
| QA19             | 67               | 656,1                   | 315,0                            | 660,3     |
| SEÇÃO 03         | 61               | 656,1                   | 315,0                            | 660,3     |
| PRIME07          | 55               | 634,5                   | 315,0                            | 660,3     |
| SEÇÃO 02         | 48               | 656,1                   | 315,0                            | 660,3     |
| SEÇÃO 01         | 41               | 656,1                   | 315,0                            | 660,2     |
| PRIME06          | 33               | 500,0                   | 315,0                            | 660,2     |
| PRIME05          | 24               | 487,5                   | 315,0                            | 660,2     |
| UHE CAMPOS NOVOS | 21               | 471,1                   | 343,4                            | 660,2     |





| Local          | Distância Cota de Fundo (m) |       | Vazão Q <sub>MLT</sub><br>(m³/s) | NA<br>(m) |  |
|----------------|-----------------------------|-------|----------------------------------|-----------|--|
| PRIME04        | 20                          | 472,0 | 343,4                            | 478,9     |  |
| PRIME03        | 16                          | 472,0 | 343,4                            | 478,8     |  |
| PRIME02 - QA20 | 7                           | 468,0 | 346,0                            | 478,8     |  |
| PRIME01        | 0                           | 468,0 | 346,0                            | 478,8     |  |

# 5.3.2. Análise para a Cheia Centenária – Cenário de Médio Prazo

Na Figura 5-42 é apresentado o perfil da linha d'água máximo de projeto considerando as cheias de projeto com períodos de recorrência de 100 anos.

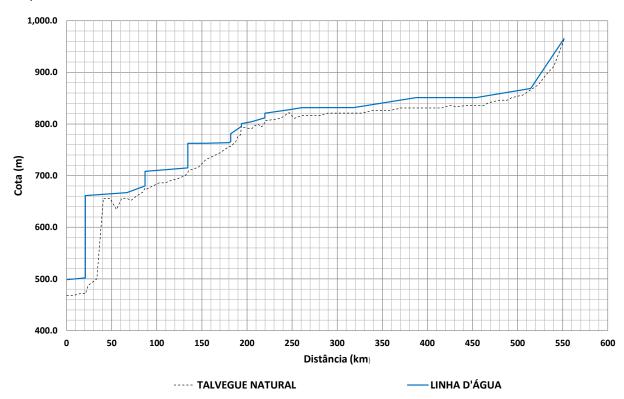



Figura 5-42: Perfil da Linha d'água para a Vazão Q<sub>100</sub> – Cenário Médio Prazo

Na Tabela 5-8 apresenta-se o resumo dos resultados obtidos na simulação em diversos pontos do curso do rio Canoas considerando a vazão máxima obtida da simulação e a cota do pico da cheia de projeto associadas a recorrência de 100 anos.

Tabela 5-8: Vazão Q<sub>100</sub> – Cenário Médio Prazo

| Local | Distância<br>(m) | Vazão Q <sub>100</sub><br>(m³/s) | NA<br>(m) |  |
|-------|------------------|----------------------------------|-----------|--|
| QA01  | 552              | 21                               | 965,3     |  |
| QA02  | 515              | 190                              | 868,8     |  |
| QA03  | 454              | 309                              | 851,1     |  |





| Local               | Distância<br>(m) | Vazão Q <sub>100</sub><br>(m³/s) | NA<br>(m) |
|---------------------|------------------|----------------------------------|-----------|
| QA04                | 387              | 152                              | 851,1     |
| QA05                | 319              | 429                              | 831,8     |
| QA06                | 261              | 616                              | 831,6     |
| QA07                | 247              | 753                              | 827,5     |
| DCII ADO DODINIHAK  | 220              | 1211                             | 820,8     |
| PCH ADO POPINHAK    | 220              | 1211                             | 812,0     |
| QA09                | 205              | 1404                             | 804,4     |
| DCI DEDV            | 194              | 1556                             | 800,8     |
| PCH PERY            | 194              | 1556                             | 795,2     |
| QA10                | 194              | 1556                             | 795,2     |
| DOLL CANOAC         | 182              | 1611                             | 781,3     |
| PCH CANOAS          | 182              | 1611                             | 765,8     |
| QA13                | 180              | 1611                             | 763,9     |
| QA16                | 154              | 3296                             | 762,6     |
| UHE SÃO ROQUE       | 134              | 3612                             | 762,6     |
| THE SAU ROQUE       | 134              | 3612                             | 715,0     |
| LILIE CARIDALDI     | 87               | 5417                             | 708,3     |
| UHE GARIBALDI       | 87               | 5417                             | 680,0     |
| QA19                | 67               | 5633                             | 667,1     |
| LILLE CANADOS NOVOS | 21               | 6234                             | 661,4     |
| UHE CAMPOS NOVOS    | 21               | 6234                             | 502,0     |
| JUSANTE             | 0                | 6383                             | 498,5     |

Da Figura 5-43 à Figura 5-46 são apresentadas as composições dos hidrogramas de cheias com recorrência de 100 anos em diversas seções existentes ao longo do curso do rio Canoas onde estão incluídos os locais dos 6 aproveitamentos hidrelétricos e, da Figura 5-47 à Figura 5-52, os cotagramas obtidos nos locais dos 6 barramentos.





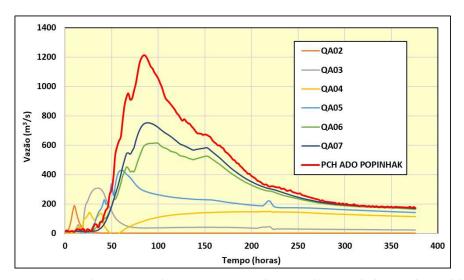



Figura 5-43: Cheias Centenárias: A montante da PCH Ado Propinhak – Cenário Médio Prazo

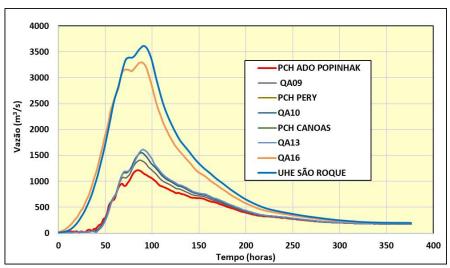



Figura 5-44: Cheias Centenárias: PCH Ado Propinhak a UHE São Roque — Cenário Médio Prazo

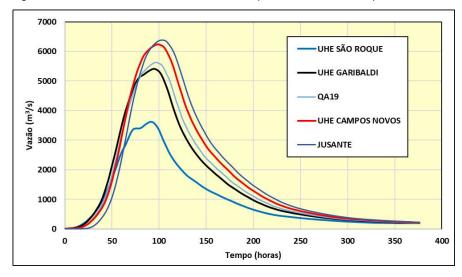



Figura 5-45: Cheias Centenárias: UHE São Roque a Seção Jusante — Cenário MédioPrazo



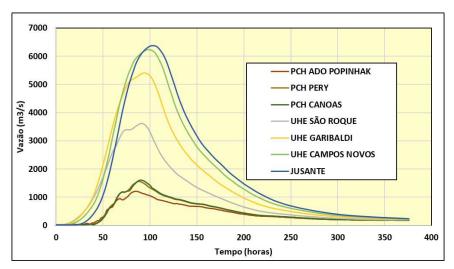



Figura 5-46: Cheias Centenárias: Hidrogramas nos Eixos dos barramentos – Cenário Médio Prazo

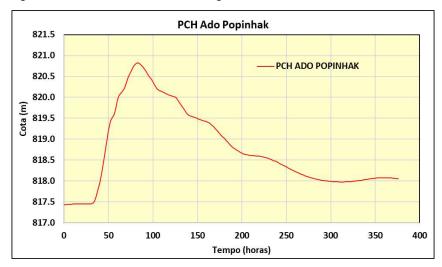



Figura 5-47: Cheia Centenária: PCH Ado Propinhak – Cenário Médio Prazo

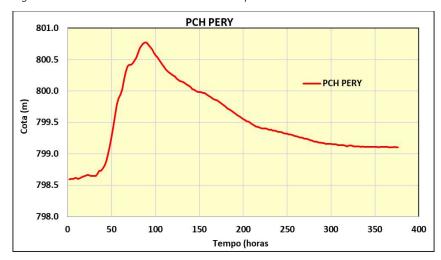



Figura 5-48: Cheia Centenária: PCH Pery – Cenário Médio Prazo



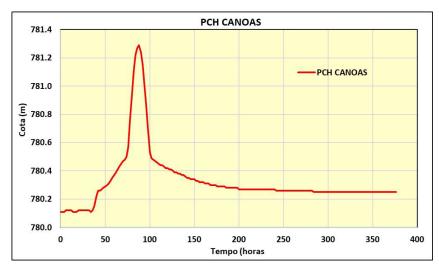



Figura 5-49: Cheia Centenária: PCH Canoas – Cenário Médio Prazo

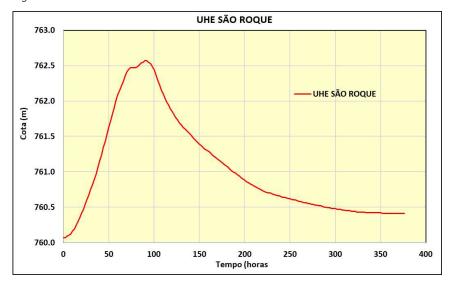



Figura 5-50: Cheia Centenária: UHE São Roque – Cenário Médio Prazo

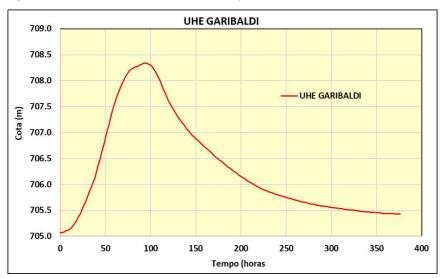



Figura 5-51: Cheia Centenária: UHE Garibaldi – Cenário Médio Prazo



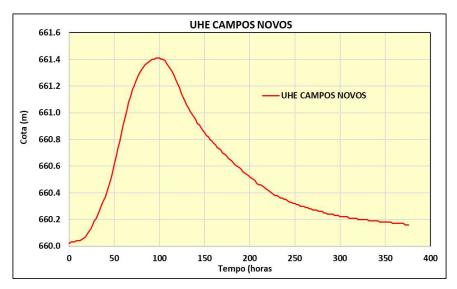



Figura 5-52: Cheia Centenária: UHE Campos Novos – Cenário Médio Prazo

#### 5.3.3. Análise para a Cheia Milenar

Na Figura 5-53 é apresentado o perfil da linha d'água máximo considerando as cheias com períodos de recorrência de 1000 anos.

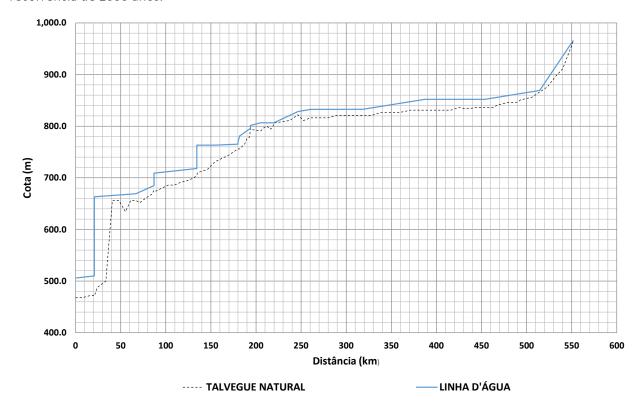



Figura 5-53: Perfil da Linha d'água para a Vazão Q<sub>1000</sub> – Cenário Médio Prazo

Na Tabela 5-9 é apresentado um resumo dos resultados obtidos da simulação em diversos pontos do curso do rio Canoas, considerando a vazão máxima obtida da simulação e a cota do pico das cheias associadas a uma recorrência de 1000 anos.





Tabela 5-9: Vazão Q<sub>1000</sub> – Cenário Médio Prazo

| Local               | Distância<br>(m) | Vazão Q <sub>100</sub> (m³/s) | NA<br>(m) |
|---------------------|------------------|-------------------------------|-----------|
| QA01                | 552              | 27                            | 965,6     |
| QA02                | 515              | 247                           | 869,3     |
| QA03                | 454              | 421                           | 852,0     |
| QA04                | 387              | 188                           | 852,0     |
| QA05                | 319              | 542                           | 832,8     |
| QA06                | 261              | 870                           | 832,6     |
| QA07                | 247              | 1061                          | 828,4     |
| PCH ADO POPINHAK    | 220              | 1706                          | 806,6     |
| PCH ADO POPINHAK    | 220              | 1706                          | 806,6     |
| QA09                | 205              | 1977                          | 806,6     |
| PCH PERY            | 194              | 2457                          | 801,5     |
| PCH PERT            | 194              | 2457                          | 795,6     |
| QA10                | 194              | 2457                          | 795,6     |
| PCH CANOAS          | 182              | 2502                          | 781,3     |
| PCH CANOAS          | 180              | 2502                          | 770,0     |
| QA13                | 180              | 2502                          | 765,2     |
| QA16                | 154              | 4881                          | 763,3     |
| UHE SÃO ROQUE       | 134              | 5282                          | 763,2     |
| OHE SAU ROQUE       | 134              | 5282                          | 718,0     |
| UHE GARIBALDI       | 87               | 7755                          | 709,2     |
| OHE GARIDALDI       | 87               | 7755                          | 685,0     |
| QA19                | 67               | 8031                          | 669,2     |
| UHE CAMPOS NOVOS    | 21               | 8893                          | 663,2     |
| OHE CAIVIPUS INUVUS | 21               | 8893                          | 510,0     |
| JUSANTE             | 0                | 9070                          | 506,0     |

Da Figura 5-54 à Figura 5-57 são apresentadas as composições dos hidrogramas das ondas de cheias com recorrência de 1000 anos em diversas seções existentes ao longo do curso do rio Canoas e, da Figura 5-58 à Figura 5-63, os cotagramas obtidos nos locais de barramento.



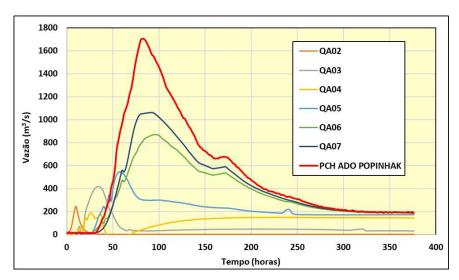



Figura 5-54: Cheias Milenares: A montante da PCH Ado Propinhak – Cenário Médio Prazo

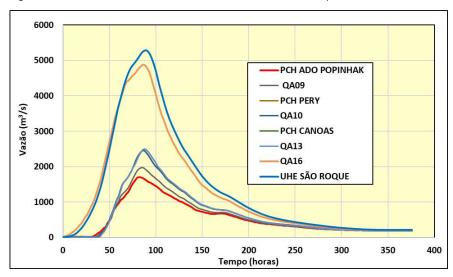



Figura 5-55: Cheias Milenares: PCH Ado Propinhak a UHE São Roque – Cenário Médio Prazo

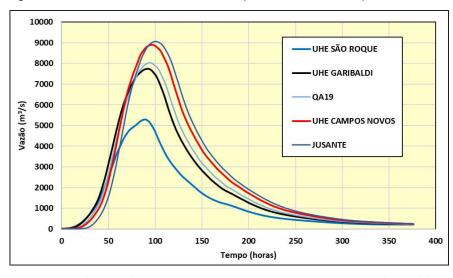



Figura 5-56: Cheias Milenares: UHE São Roque a Seção Jusante – Cenário Médio Prazo



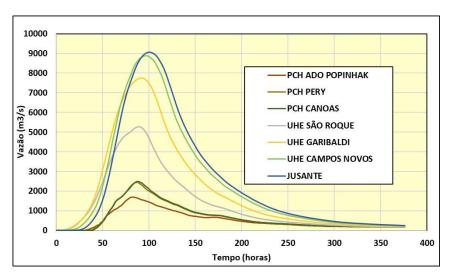



Figura 5-57: Cheias Milenares: Hidrogramas nos Eixos dos barramentos – Cenário Médio Prazo




Figura 5-58: Cheia Milenar: PCH Ado Propinhak – Cenário Médio Prazo

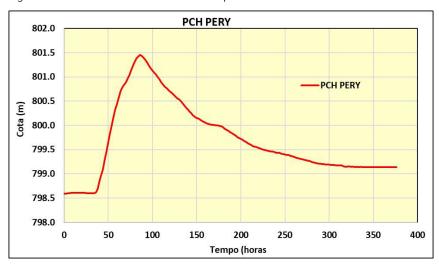



Figura 5-59: Cheia Milenar: PCH Pery – Cenário Médio Prazo



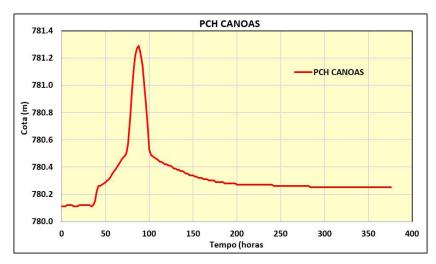



Figura 5-60: Cheia Milenar: PCH Canoas – Cenário Médio Prazo

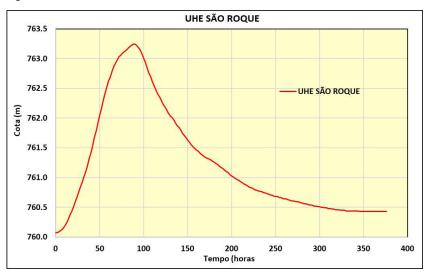



Figura 5-61: Cheia Milenar: UHE São Roque – Cenário Médio Prazo

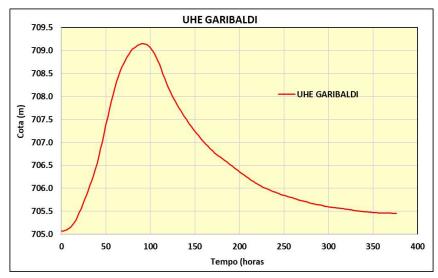



Figura 5-62: Cheia Milenar: UHE Garibaldi – Cenário Médio Prazo



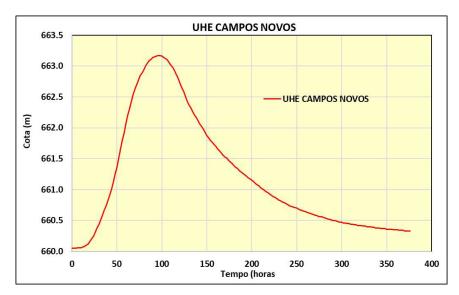



Figura 5-63: Cheia Milenar: UHE Campos Novos – Cenário Médio Prazo

# 5.4. Simulação do Cenário de Longo Prazo – 2040

Como não há previsão de ocupação da bacia com outros barramentos além dos listados o Cenário de Longo Prazo é igual ao de Médio Prazo.

# 5.5. Análise Comparativa entre as Condições Com e Sem a PCH Canoas

Como se pode verificar pelas simulações, a implantação do aproveitamento de Canoas produzirá interferências mínimas nos valores de vazões e de níveis d'água, a jusante do eixo de barramento.

Este fato decorre do pequeno volume de acumulação do reservatório da PCH Canoas que apresenta no nível máximo normal de operação de 780,0 m um volume de apenas 12,29 hm³, o que, para a vazão média de longo termo, de 147,12 m³/s, o tempo de residência da água no reservatório resultará em valor próximo de um dia, portanto, mesmo com a implantação do reservatório, aquele trecho manterá regime de escoamento semelhante ao de um ambiente lótico.





# 6. MODELAGEM DE QUALIDADE DA ÁGUA

Os estudos de modelagem de qualidade da água foram baseados no aplicativo HEC-RAS (Hydrologic Engineering Center - River Analysis System) - versão 5.0.7 (março de 2019), concebido pelo "U.S. Army Corps of Engineers".

Nesta abordagem foram considerados os mesmos cenários de composições de obras hidráulicas:

- Cenário atual. Consideram os empreendimentos em operação: UHE Campos Novos; UHE Garibaldi; PCH Pery e PCH Ado Popinhak;
- Cenário de Curto Prazo. Inclui a UHE São Roque, cujo início de operação pode ocorrer até o final do ano de 2021;
- Cenário de Médio Prazo 2030. Inclui a PCH Canoas, compondo a cascata completa formada pelos seis aproveitamentos. O Cenário de Longo Prazo tem a mesma configuração do de Médio Prazo

Os cenários hidrológicos analisados foram os seguintes:

- Vazão de seca = 50% da vazão Q<sub>98%</sub>;
- Vazão média = Q<sub>MLT</sub> e
- Vazão de cheia =  $Q_{1.000}$

## 6.1. Dados de Entrada para a Modelagem Matemática

Para a montagem da base de dados de entrada da modelagem matemática foram consideradas séries de vazões características, determinadas conforme apresentado no item 4.2.15, e os resultados de amostragem de qualidade da água ao longo do curso do rio Canoas.

#### 6.1.1. Dados de Amostragem de Qualidade da Água

Para a realização dos estudos foi disponibilizada uma base de dados de amostragem de qualidade da água desenvolvidas no período de 16/12/20 e 05/02/21, com uma coleta por ponto desenvolvidas em 20 seções distribuídas ao longo de todo o percurso do rio Canoas. Na Figura 6-1 é apresentada a localização dos pontos de amostragens de qualidade da água.

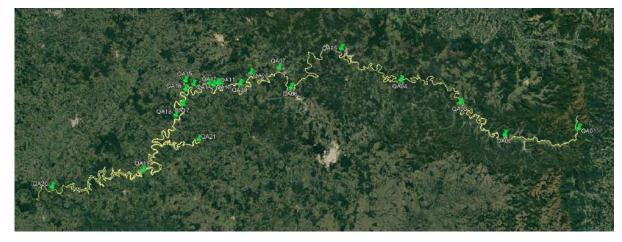



Figura 6-1: Pontos de Amostragens de Qualidade da Água.





Na Tabela 6-1 são apresentados dados dos parâmetros mais relevantes utilizados nos estudos de modelagem matemática.

Baseado nos resultados das amostragens de qualidade da água, verifica-se para este grupo de parâmetros, o atendimento dos Valores Máximos Permitidos (VMP) do que determina a Resolução CONAMA 357/2005, para enquadramento de rio em classe 2.

O único constituinte que não atendeu esta Resolução foi o fósforo total que no ponto QA-16 comparece com uma concentração de 0,132 mg/L, superando o valor máximo normalizado de 0,100 mg/L.

Tabela 6-1: Dados de Amostragem de Qualidade da Água

|                          |                |                | PON            | ITO DE COLI    | ETA            |                |                |
|--------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Parâmetros               | QA-01          | QA-02          | QA-03          | QA-04          | QA-05          | QA-06          | QA-07          |
| Data                     | 16/12/20<br>20 | 16/12/20<br>20 | 16/12/20<br>20 | 16/12/20<br>20 | 16/12/20<br>20 | 07/01/20<br>21 | 07/01/2<br>021 |
| Temperatura da água (°C) | 17             | 23,4           | 23,1           | 22,8           | 23,2           | 23,1           | 23,5           |
| рН                       | 6,57           | 7,19           | 6,71           | 6,39           | 6,6            | 7,37           | 7,27           |
| OD (mg/L)                | 8,91           | 7,48           | 7,4            | 6,97           | 6,69           | 7,25           | 7,02           |
| DBO (mg/L)               | <2,79          | <2,79          | <2,79          | <2,79          | <2,79          | <2,79          | <2,79          |
| NO <sub>3</sub> (mg/L)   | <1,42          | 1,52           | 2,14           | 3,64           | 4,18           | 3,11           | 3,52           |
| NH₃ (mg/L)               | <0,10          | 0,14           | 0,24           | 0,37           | 0,6            | 0,26           | 0,35           |
| Fósforo Dissol. (mg/L)   | <0,013         | 0,024          | 0,019          | 0,038          | 0,039          | 0,043          | 0,042          |
| Fósforo Total (mg/L)     | <0,013         | 0,032          | 0,039          | 0,044          | 0,045          | 0,094          | 0,091          |
| Clorofila a (NMP/100mL)  | <4,7           | <4,7           | <4,7           | <4,7           | <4,7           | <4,7           | <4,7           |
|                          |                |                | PON            | ITO DE COLI    | ETA            |                |                |
| Parâmetros               | QA-08          | QA-09          | QA-10          | QA-11          | QA-12          | QA-13          | QA-14          |
| Data                     | 07/01/20<br>21 | 17/12/20<br>20 | 17/12/20<br>20 | 17/12/20<br>20 | 17/12/20<br>20 | 17/12/20<br>20 | 17/12/2<br>020 |
| Temperatura da água (°C) | 24,4           | 23,2           | 24,2           | 24,4           | 26,1           | 25,4           | 24,5           |
| рН                       | 7,32           | 6,83           | 6,86           | 6,97           | 6,94           | 6,98           | 6,88           |
| OD (mg/L)                | 6,86           | 7,12           | 7,03           | 7,34           | 6,97           | 7,08           | 7,02           |
| DBO (mg/L)               | <2,79          | <2,79          | <2,79          | <2,79          | <2,79          | <2,79          | <2,79          |
| NO3 (mg/L)               | 2,25           | 3,13           | 3,89           | 3,29           | 2,79           | 3,26           | 3,28           |
| NH3 (mg/L)               | 0,17           | 0,28           | 0,27           | 0,25           | 0,25           | 0,27           | 0,26           |
| Fósforo Dissol. (mg/L)   | 0,037          | 0,044          | 0,045          | 0,037          | 0,037          | 0,03           | 0,028          |
| Fósforo Total (mg/L)     | 0,065          | 0,052          | 0,054          | 0,044          | 0,038          | 0,038          | 0,037          |
| Clorofila a (NMP/100mL)  | <4,7           | <4,7           | <4,7           | <4,7           | <4,7           | <4,7           | <4,7           |





|                          | PONTO DE COLETA |                |                |                |                |                |  |
|--------------------------|-----------------|----------------|----------------|----------------|----------------|----------------|--|
| Parâmetros               | QA-15           | QA-16          | QA-17          | QA-18          | QA-19B         | QA-20          |  |
| Data                     | 17/12/20<br>20  | 06/01/20<br>21 | 06/01/20<br>21 | 17/12/20<br>20 | 05/02/20<br>21 | 06/01/20<br>21 |  |
| Temperatura da água (°C) | 26,3            | 24,1           | 24,2           | 26,20          | 26,60          | 27,90          |  |
| рН                       | 6,92            | 7,5            | 7,55           | 7,21           | 6,46           | 7,53           |  |
| OD (mg/L)                | 7,37            | 7,67           | 7,58           | 7,85           | 4,01           | 7,56           |  |
| DBO (mg/L)               | 9,28            | <2,79          | <2,79          | <2,79          | <2,79          | <2,79          |  |
| NO3 (mg/L)               | 4               | 2,9            | 3,03           | 3,48           | <1,42          | 1,95           |  |
| NH3 (mg/L)               | 0,41            | 0,2            | 0,18           | 0,2            | 0,35           | 0,1            |  |
| Fósforo Dissol. (mg/L)   | 0,022           | 0,041          | 0,042          | <0,013         | 0,047          | 0,102          |  |
| Fósforo Total (mg/L)     | 0,034           | 0,132          | 0,094          | 0,014          | 0,04           | 0,041          |  |
| Clorofila a (NMP/100mL)  | <4,7            | <4,7           | <4,7           | <4,7           | <4,7           | <4,7           |  |

# 6.2. Análise do Comportamento da Cascata de Empreendimentos

Condicionado por um regime de precipitação intenso e padrão de ocorrência bimodal, as vazões do rio Canoas se caracterizam por elevada disponibilidade hídrica com comportamento sazonal pouco pronunciado, ou seja, sem a identificação de um período anual nitidamente seco.

No que se refere-se à qualidade da água, os parâmetros amostrados selecionados para a modelagem matemática praticamente atendem o que determina a resolução Conama 357/2005. Considera-se, no entanto, que estes resultados foram baseados em dados de uma única campanha de amostragem, representando uma janela hidrológica intermediária (meses de dezembro e janeiro) inserida entre os meses mais secos e mais úmidos.

Considerando que os padrões de qualidade da água são altamente influenciados pelo regime de chuvas e de vazões, recomendam-se o desenvolvimento de novas campanhas centralizadas principalmente no mês de abril (período de estiagem) e nos meses de setembro e outubro (período de cheias), procurando correlacionar a qualidade da água com as janelas hidrológicas.

Quando o recurso hídrico é alterado pela implantação de reservatórios, duas condições relacionadas a qualidade da água se sobressaem: as quedas nas taxas de oxigênio dissolvido ao eliminar trechos de corredeiras e o favorecimento do processo de eutrofização, onde fósforo aparece como parâmetro limitante desta cinética.

Na avaliação dos impactos causadas por reservatórios, o tempo de residência comparece como um dos parâmetros mais relevantes ao traduzir os processos de transformação de ambiente lótico para lêntico.

A condição atual do rio Canoas é alterada atualmente pela presença de 4 empreendimentos hidrelétricos seguintes: Ado Popinhak, Pery, Garibaldi e Campos Novos e, em fase de entrada de operação encontra-se a UHE São Roque prevista para ocorrer no corrente ano de 2021.

A PCH Canoas, ainda em fase de estudos, vem completar este arranjo de empreendimentos.

Visando avaliar o impacto de cada aproveitamento são apresentados na Tabela 6-2 os dados referentes a disponibilidade hídrica, volume de acumulação no nível máximo normal e o tempo de residência das águas.





Tabela 6-2: Dados dos Aproveitamentos Hidrelétricos

| Aproveitamento   | Nível d´água<br>Máx. Normal<br>(m) | Volume<br>(hm³) | Vazão<br>(m³/s) | Tempo de<br>Residência<br>(dias) |
|------------------|------------------------------------|-----------------|-----------------|----------------------------------|
| PCH Ado Popinhak | 817,00                             | 0,90            | 139,33          | 0,08                             |
| PCH Pery         | 798,40                             | 0,91            | 145,71          | 0,07                             |
| PCH Canoas       | 780,00                             | 12,29           | 147,12          | 0,97                             |
| UHE São Roque    | 760,00                             | 588,04          | 247,23          | 27,23                            |
| UHE Garibaldi    | 705,00                             | 249,86          | 313,28          | 9,23                             |
| UHE Campos Novos | 650,00                             | 1477,00         | 313,28          | 54,57                            |

O maior reservatório é o de Campos Novos, situado próximo a foz do rio Canoas, que apresenta um tempo de residência de 55 dias. Em seguida comparece São Roque com 28 dias e Garibaldi, com, aproximadamente, 9 dias.

A montante, aparecem os barramentos de Ado Popinhak e Pery, que apresentam reservatórios diminutos com tempos de residência de apenas 2 horas, conformando um ambiente assemelhado a lótico.

A PCH Canoas, objeto central dos estudos, apresenta um tempo de residência de, aproximadamente, um dia, também se assemelhando a ambiente lótico.

Segundo Straskraba, os reservatórios apresentam as seguintes classificações:

- Para tempo de residência até duas semanas: ambiente assemelhado a lótico;
- Para tempo de residência entre duas semanas e um ano: ambiente intermediário entre lêntico e lótico; e
- Para tempo de residência acima de 1 ano: ambiente lêntico.

Baseado nesta classificação, os empreendimentos Ado Popinhak, Pery, Canoas e Garibaldi são classificados como ambiente assemelhado a lótico; São Roque e Campos Novos como ambiente intermediário.

As concentrações máximas do fósforo total, segundo normalizado pela Resolução Conama 357/05 para enquadramento de rio em classe 2, também apresentam valores restritivos, condicionados ao tempo de residência:

- Concentração máxima de 0,1 mg/L para ambiente Lótico;
- Concentração de 0,05 mg/L para tempo de residência entre 2 e 40 dias e tributários diretos de ambiente lêntico; e
- Concentração de 0,03 mg/L para ambiente lêntico.

Nestas condições, para os três primeiros aproveitamentos da cascata, a concentração máxima de fósforo total é menos restritiva e limitada em 0,1 mg/L. Para São Roque e Garibaldi, a restrição máxima é limitada em 0,05 mg/L e, no caso do reservatório de Campos Novos, a limitação é mais restritiva, igual a 0,03 mg/L.

## 6.3. Apresentação dos Resultados da Modelagem Matemática

A seguir são apresentados os resultados gráficos das simulações referentes aos três cenários de implantação dos aproveitamentos hidrelétricos, onde são comparadas as variações dos parâmetros de qualidade da água ao longo de todo o percurso do rio Canoas.





Nestas análises foram considerados os seguintes parâmetros: Clorofila-a, Oxigênio Dissolvido, Demanda bioquímica do oxigênio (DBO), Nitrato, Amônia e Fósforo orgânico, avaliando o comportamento comparativo da qualidade da água referenciadas aos seguintes cenários de arranjos hidráulicos: Cenário Atual, Cenário de Curto Prazo e Cenário de Médio/Longo Prazo.

# 6.3.1. Condição: Vazão Média de Longo Termo (Q<sub>MLT</sub>)

Na Tabela 6-3 são apresentados os valores das vazões médias de longo termo, e na Tabela 6-4 as concentrações dos parâmetros de qualidade da água obtidas dos trabalhos de amostragens, cujas bases foram utilizadas na composição dos dados de entrada da modelagem matemática.

Para os parâmetros Nitrito, Nitrogênio orgânico e Fósforo Orgânico, não contemplados no plano de monitoramento de qualidade da água, as concentrações foram estimadas com base em dados de estudos ambientais desenvolvidos na região.

Para os parâmetros DBO e Clorofila, que assinalaram concentrações abaixo do limite de quantificação do método analítico (LQ), adotou-se uma concentração igual a metade do LQ.

Tabela 6-3: Vazões Médias de Longo Termo (Q<sub>MLT</sub>)

| Local | Estaca |        | o QMLT<br>n³/s) |  |  |
|-------|--------|--------|-----------------|--|--|
|       |        | Aporte | Acumulado       |  |  |
| QA01  | 551513 | 3,0    | 3,0             |  |  |
| QA02  | 514579 | 17,0   | 20,0            |  |  |
| QA03  | 453919 | 26,0   | 46,0            |  |  |
| QA04  | 387318 | 26,0   | 72,0            |  |  |
| QA05  | 318514 | 17,0   | 89,0            |  |  |
| QA06  | 260580 | 28,0   | 117,0           |  |  |
| QA07  | 246598 | 5,0    | 122,0           |  |  |
| QA08  | 237360 | 17,0   | 139,0           |  |  |
| QA09  | 205324 | 4,0    | 143,0           |  |  |
| QA10  | 193833 | 4,0    | 147,0           |  |  |
| QA16  | 154328 | 94,0   | 241,0           |  |  |
| QA17  | 134330 | 6,0    | 247,0           |  |  |
| QA19  | 66901  | 68,0   | 315,0           |  |  |
| QA20  | 16275  | 31,0   | 346,0           |  |  |

Tabela 6-4: Parâmetros de Qualidade da Água

| Local | Temp.<br>Água<br>(°C) | OD<br>(mg/L) | DBO<br>(mg/L) | NO3<br>(mg/L) | NO2<br>(mg/L) | NO<br>(mg/L) | NH3<br>(mg/L) | OPO4<br>(mg/L) | PO<br>(mg/L) | CL_a<br>(ug/L) |
|-------|-----------------------|--------------|---------------|---------------|---------------|--------------|---------------|----------------|--------------|----------------|
| QA01  | 17,0                  | 8,9          | 1,4           | 1,420         | 0,010         | 2,000        | 0,100         | 0,013          | 0,050        | 2,4            |
| QA02  | 23,4                  | 7,5          | 1,4           | 1,520         | 0,010         | 2,000        | 0,140         | 0,024          | 0,050        | 2,4            |
| QA03  | 23,1                  | 7,4          | 1,4           | 2,140         | 0,010         | 2,000        | 0,240         | 0,019          | 0,050        | 2,4            |





| Local | Temp.<br>Água<br>(°C) | OD<br>(mg/L) | DBO<br>(mg/L) | NO3<br>(mg/L) | NO2<br>(mg/L) | NO<br>(mg/L) | NH3<br>(mg/L) | OPO4<br>(mg/L) | PO<br>(mg/L) | CL_a<br>(ug/L) |
|-------|-----------------------|--------------|---------------|---------------|---------------|--------------|---------------|----------------|--------------|----------------|
| QA04  | 22,8                  | 7,0          | 1,4           | 3,640         | 0,010         | 2,000        | 0,370         | 0,038          | 0,050        | 2,4            |
| QA05  | 23,2                  | 6,7          | 1,4           | 4,180         | 0,010         | 2,000        | 0,600         | 0,039          | 0,050        | 2,4            |
| QA06  | 23,1                  | 7,3          | 1,4           | 3,110         | 0,010         | 2,000        | 0,260         | 0,043          | 0,050        | 2,4            |
| QA07  | 23,5                  | 7,0          | 1,4           | 3,520         | 0,010         | 2,000        | 0,350         | 0,042          | 0,050        | 2,4            |
| QA08  | 24,4                  | 6,9          | 1,4           | 2,250         | 0,010         | 2,000        | 0,170         | 0,037          | 0,050        | 2,4            |
| QA09  | 23,2                  | 7,1          | 1,4           | 3,130         | 0,010         | 2,000        | 0,280         | 0,044          | 0,050        | 2,4            |
| QA10  | 24,2                  | 7,0          | 1,4           | 3,890         | 0,010         | 2,000        | 0,270         | 0,045          | 0,050        | 2,4            |
| QA16  | 24,1                  | 7,7          | 1,4           | 3,280         | 0,010         | 2,000        | 0,260         | 0,028          | 0,050        | 2,4            |
| QA17  | 24,2                  | 7,6          | 1,4           | 2,900         | 0,010         | 2,000        | 0,200         | 0,041          | 0,050        | 2,4            |
| QA19  | 26,6                  | 4,0          | 1,4           | 3,030         | 0,010         | 2,000        | 0,180         | 0,042          | 0,050        | 2,4            |
| QA20  | 27,9                  | 7,6          | 1,4           | 3,480         | 0,010         | 2,000        | 0,200         | 0,013          | 0,050        | 2,4            |

As análises assinalam, de forma geral, pouca alteração nos padrões da qualidade da água, ao comparar os resultados gráficos obtidos das simulações referentes aos cenários de curto e médio prazo, quando da inclusão isolada da PCH Canoas na cascata de empreendimentos. Este fato, como já mencionado, deve-se a reduzida capacidade volumétrica deste reservatório, que apresenta um tempo de residência da água menor que 1 dia, o que confere um comportamento assemelhando a ambiente lótico.

As alterações percebidas na qualidade da água, em relação a condição observada atualmente, devem-se principalmente a implantação da UHE São Roque, cujo reservatório apresenta um tempo de residência substancialmente maior e igual a 28 dias.

As simulações apuram o efeito de oxigenação das águas promovidas pelo trecho inicial de 140 km do rio Canoas a partir do trecho de cabeceiras, cujo álveo apresenta uma conformação bastante movimentada, o que vem favorecer maior velocidade de escoamento das águas em regime turbulento e consequente oxigenação das águas.

Os resultados assinalam para os parâmetros simulados, o atendimento dos Valores Máximos Permitidos (VMP), conforme preconizado pela resolução CONAMA 357/05 para enquadramento de rio em Classe 2.

A única extrapolação refere-se ao fósforo total no trecho do rio Canoas abrangido pelo aproveitamento de São Roque, que pode ficar no limiar normalizado por esta Resolução. Em função do tempo de residência deste aproveitamento, avaliado em 28 dias, a concentração máxima de fosforo total é normalizado em 0,050 mg/L.





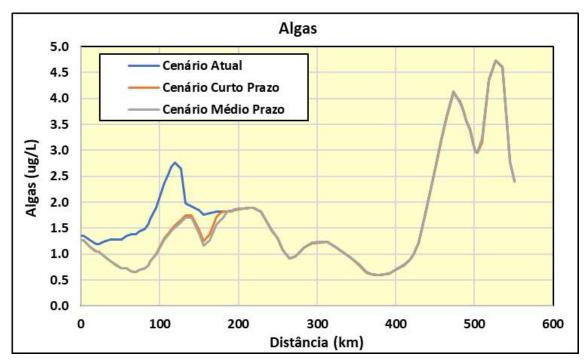



Figura 6-2: Concentração de Algas (CL\_a) – Vazão Q<sub>MLT</sub>

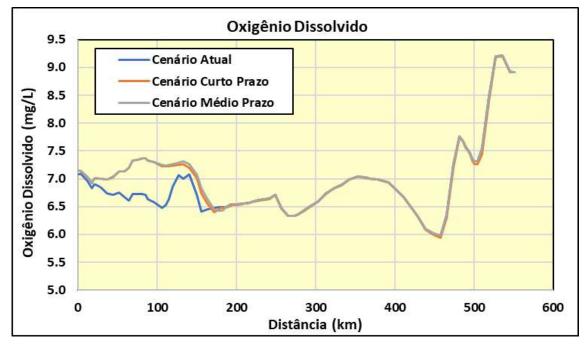



Figura 6-3: Concentração de Oxigênio Dissolvido – Vazão Q<sub>MLT</sub>





Figura 6-4: Concentração da DBO – Vazão Q<sub>MLT</sub>

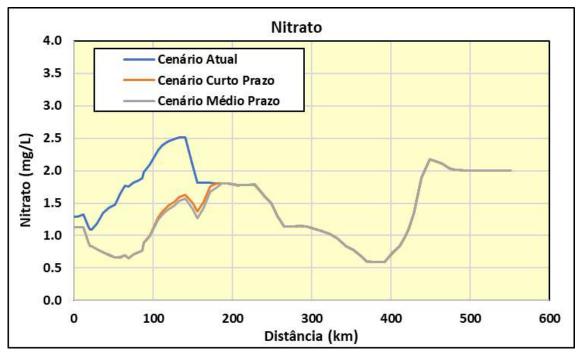



Figura 6-5: Concentração de Nitrato – Vazão Q<sub>MLT</sub>



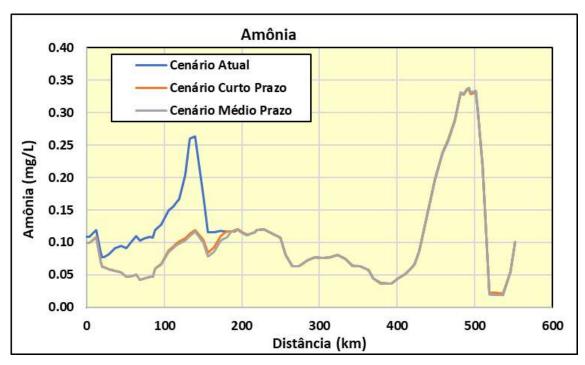



Figura 6-6: Concentração de Amônia – Vazão Q<sub>MLT</sub>

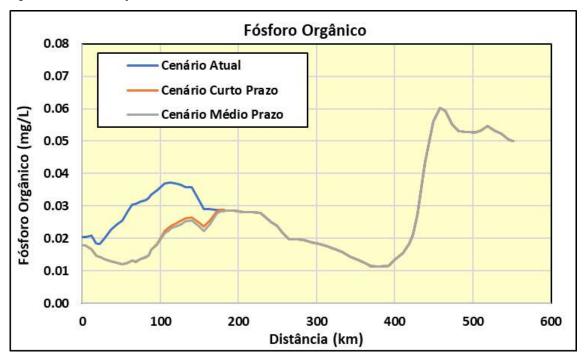



Figura 6-7: Concentração de Fósforo Orgânico – Vazão Q<sub>MLT</sub>

#### 6.3.2. Condição: Vazão de Cheia Milenar

Nos Tabela 6-5 e Tabela 6-6 são apresentadas as vazões de pico das cheias milenares e as cargas considerados nos estudos de modelagem matemática. Na modelagem matemática considerou-se escoamento do tipo não permanente conforme hidrogramas definidos anteriormente pelos estudos hidrodinâmicos.



Para a vazão milenar, os valores das concentrações dos parâmetros de qualidade da água: DBO, Nitrato, Amônia, Nitrogênio orgânico, Fósforo Orgânico e Orto-fosfato foram minorados pela relação entre as vazões QMLT e a vazão de pico da cheia milenar.

Foram mantidos os valores da temperatura da água e das concentrações do oxigênio dissolvido e da Clorofila-a baseado em dados das campanhas de amostragem de campo.

Tabela 6-5: Vazões de Cheia (Q1000)

| Local | Estaca | Vazão de Pico<br>(m3/s) |
|-------|--------|-------------------------|
| QA01  | 551513 | 23                      |
| QA02  | 514579 | 215                     |
| QA03  | 453919 | 613                     |
| QA04  | 387318 | 1011                    |
| QA05  | 318514 | 1296                    |
| QA06  | 260580 | 1821                    |
| QA07  | 246598 | 1912                    |
| QA08  | 237360 | 2237                    |
| QA09  | 205324 | 2320                    |
| QA10  | 193833 | 2389                    |
| QA16  | 154328 | 4366                    |
| QA17  | 134330 | 4499                    |
| QA19  | 66901  | 6038                    |
| QA20  | 16275  | 6783                    |

Tabela 6-6: Parâmetros de Qualidade da Água

| Local | Temp,<br>Água<br>(°C) | OD<br>(mg/L) | DBO<br>(mg/L) | NO3<br>(mg/L) | NO2<br>(mg/L) | NO<br>(mg/L) | NH3<br>(mg/L) | OPO4<br>(mg/L) | PO<br>(mg/L) | CL_a<br>(ug/L) |
|-------|-----------------------|--------------|---------------|---------------|---------------|--------------|---------------|----------------|--------------|----------------|
| QA01  | 17,0                  | 8,9          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |
| QA02  | 23,4                  | 7,5          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |
| QA03  | 23,1                  | 7,4          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |
| QA04  | 22,8                  | 7,0          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |
| QA05  | 23,2                  | 6,7          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |
| QA06  | 23,1                  | 7,3          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |
| QA07  | 23,5                  | 7,0          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |
| QA08  | 24,4                  | 6,9          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |
| QA09  | 23,2                  | 7,1          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |
| QA10  | 24,2                  | 7,0          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |
| QA16  | 24,1                  | 7,7          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |
| QA17  | 24,2                  | 7,6          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |





| Local | Temp,<br>Água<br>(°C) | OD<br>(mg/L) | DBO<br>(mg/L) | NO3<br>(mg/L) | NO2<br>(mg/L) | NO<br>(mg/L) | NH3<br>(mg/L) | OPO4<br>(mg/L) | PO<br>(mg/L) | CL_a<br>(ug/L) |
|-------|-----------------------|--------------|---------------|---------------|---------------|--------------|---------------|----------------|--------------|----------------|
| QA19  | 26,6                  | 4,0          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |
| QA20  | 27,9                  | 7,6          | 0,141         | 0,136         | 0,0           | 0,05         | 0,012         | 0,002          | 0,003        | 0,24           |

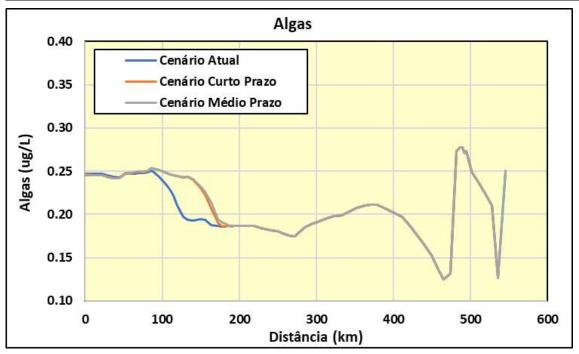



Figura 6-8: Concentração de Algas (CL\_a) - Cheia Milena

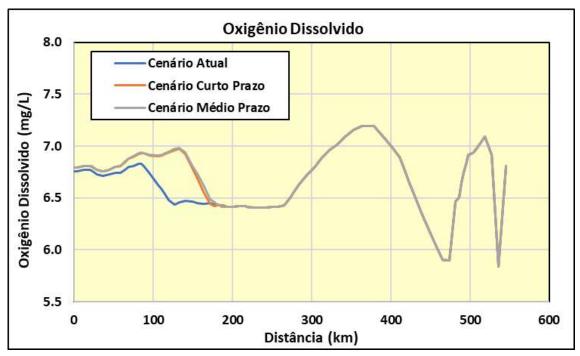



Figura 6-9: Concentração de Oxigênio Dissolvido – Cheia Milenar



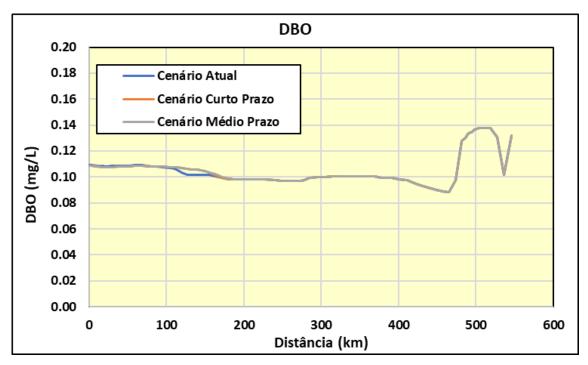



Figura 6-10: Concentração da DBO — Cheia Milenar

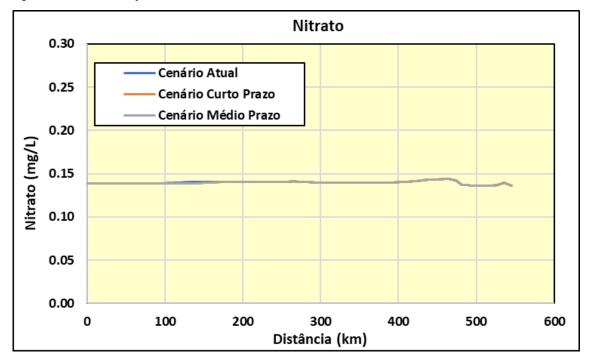



Figura 6-11: Concentração de Nitrato – Cheia Milenar



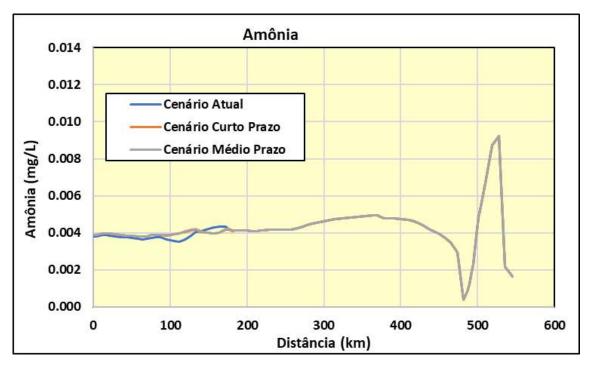



Figura 6-12: Concentração de Amônia – Cheia Milenar

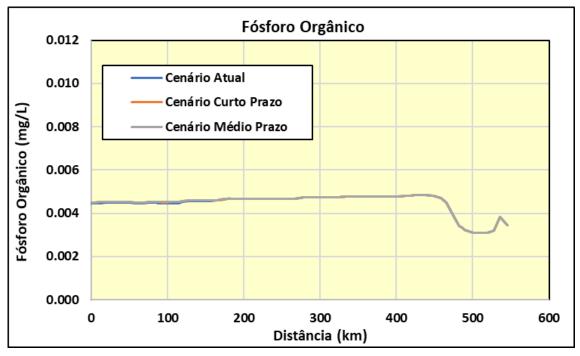



Figura 6-13: Concentração de Fósforo Orgânico – Cheia Milenar

#### 6.3.3. Condição: Vazão de Seca (50%-Q<sub>98%</sub>)

Nas Tabela 6-7 e Tabela 6-8 são apresentados os esquemas de montagem dos arquivos de entrada de vazões e cargas considerados nos estudos de modelagem matemática.

Para o cenário de seca, os valores das concentrações dos parâmetros de qualidade da água: DBO, Nitrato, Amônia, Nitrogênio orgânico, Fósforo Orgânico e Orto-fosfato foram majorados pela relação entre as vazões QMLT e a vazão de seca (50% da vazão Q98%).





Os valores do oxigênio dissolvido foram considerados reduzidos pela metade, a considerar a elevada carga de DBO resultante deste processo. A temperatura da água e a concentração da Clorofila-a foram mantidas com os mesmos valores obtidos das campanhas de amostragem.

Tabela 6-7: Vazões de Seca – 50% de Q<sub>98%</sub>

| Local | Estaca | Vazão Q <sub>98%</sub><br>(m³/s) | Vazão 50%-Q <sub>98%</sub><br>(m³/s) |           |  |  |
|-------|--------|----------------------------------|--------------------------------------|-----------|--|--|
|       |        | (111 /3)                         | Aporte                               | Acumulado |  |  |
| QA01  | 551513 | 0,47                             | 0,235                                | 0,24      |  |  |
| QA02  | 514579 | 3,0                              | 1,420                                | 1,66      |  |  |
| QA03  | 453919 | 8,0                              | 2,223                                | 3,88      |  |  |
| QA04  | 387318 | 12,0                             | 2,223                                | 6,10      |  |  |
| QA05  | 318514 | 15,0                             | 1,400                                | 7,50      |  |  |
| QA06  | 260580 | 19,9                             | 2,450                                | 9,95      |  |  |
| QA07  | 246598 | 20,7                             | 0,400                                | 10,35     |  |  |
| QA08  | 237360 | 23,6                             | 1,450                                | 11,80     |  |  |
| QA09  | 205324 | 24,3                             | 0,350                                | 12,15     |  |  |
| QA10  | 193833 | 24,9                             | 0,30                                 | 12,45     |  |  |
| QA16  | 154328 | 41,0                             | 8,000                                | 20,45     |  |  |
| QA17  | 134330 | 42,0                             | 0,500                                | 20,95     |  |  |
| QA19  | 66901  | 53,3                             | 5,700                                | 26,65     |  |  |
| QA20  | 16275  | 58,6                             | 2,650                                | 29,30     |  |  |

Tabela 6-8: Parâmetros de Qualidade da Água

| Local | Temp.<br>Água<br>(°C) | OD<br>(mg/L) | DBO<br>(mg/L) | NO3<br>(mg/L) | NO2<br>(mg/L) | NO<br>(mg/L) | NH3<br>(mg/L) | OPO4<br>(mg/L) | PO<br>(mg/L) | CL_a<br>(ug/L) |
|-------|-----------------------|--------------|---------------|---------------|---------------|--------------|---------------|----------------|--------------|----------------|
| QA01  | 17,0                  | 4,5          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |
| QA02  | 23,4                  | 3,6          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |
| QA03  | 23,1                  | 4,5          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |
| QA04  | 22,8                  | 3,1          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |
| QA05  | 23,2                  | 2,6          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |
| QA06  | 23,1                  | 4,5          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |
| QA07  | 23,5                  | 0,8          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |
| QA08  | 24,4                  | 2,9          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |
| QA09  | 23,2                  | 4,5          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |
| QA10  | 24,2                  | 1,9          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |
| QA16  | 24,1                  | 4,4          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |
| QA17  | 24,2                  | 2,0          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |



| Local | Temp.<br>Água<br>(°C) | OD<br>(mg/L) | DBO<br>(mg/L) | NO3<br>(mg/L) | NO2<br>(mg/L) | NO<br>(mg/L) | NH3<br>(mg/L) | OPO4<br>(mg/L) | PO<br>(mg/L) | CL_a<br>(ug/L) |
|-------|-----------------------|--------------|---------------|---------------|---------------|--------------|---------------|----------------|--------------|----------------|
| QA19  | 26,6                  | 0,0          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |
| QA20  | 27,9                  | 4,5          | 16,6          | 33,21         | 0,119         | 11,88        | 3,000         | 0,456          | 0,594        | 2,4            |

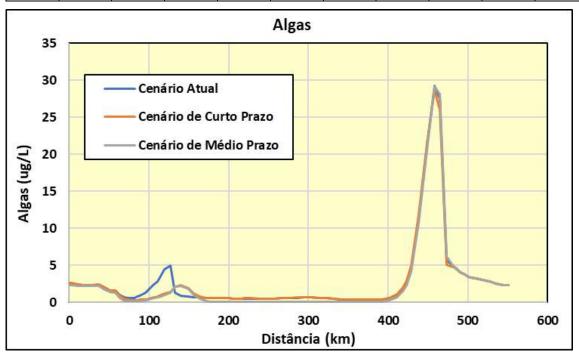



Figura 6-14: Concentração de Algas (CL\_a) – Vazão de Seca

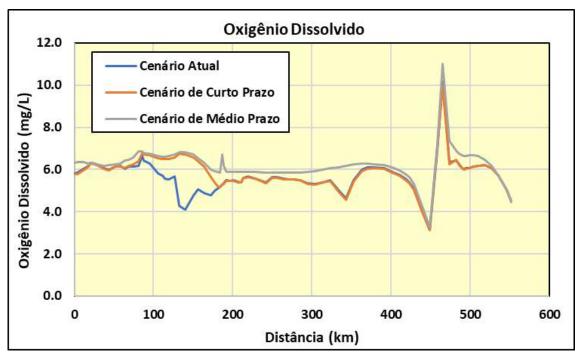



Figura 6-15: Concentração de Oxigênio Dissolvido – Vazão de Seca



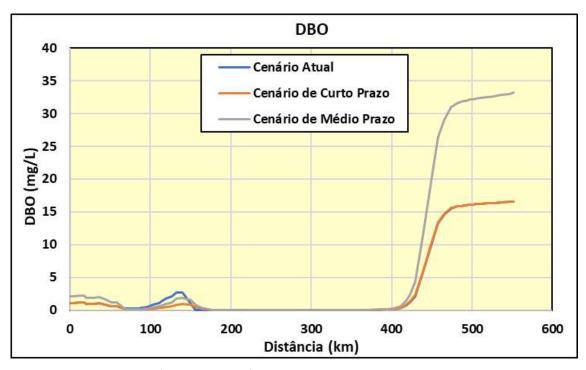



Figura 6-16: Concentração da DBO — Vazão de Seca

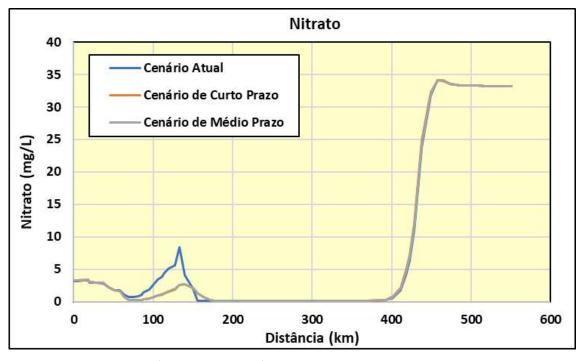



Figura 6-17: Concentração de Nitrato — Vazão de Seca



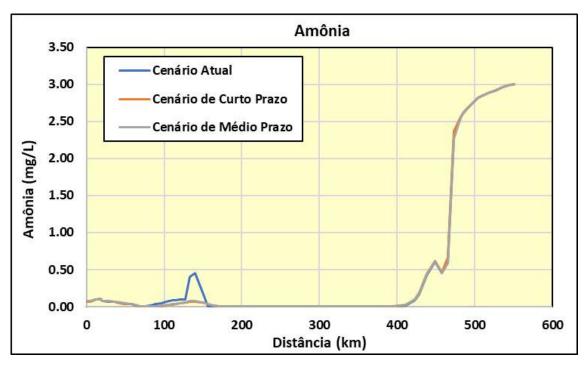



Figura 6-18: Concentração de Amônia – Vazão de Seca

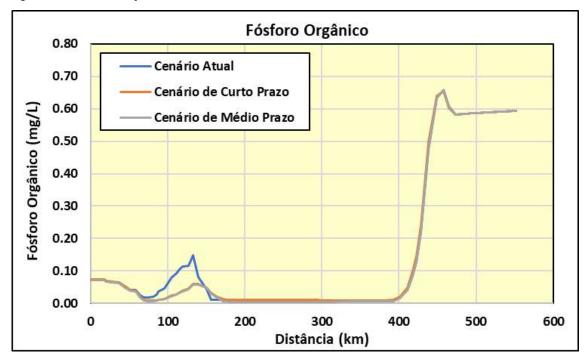



Figura 6-19: Concentração de Fósforo Orgânico – Vazão de Seca



## 7. CONCLUSÕES

Os resultados da campanha de amostragem assinalam padrões satisfatórios de qualidade das águas, atendendo em, praticamente, toda a área, aos valores máximos permitidos (VMP), preconizado pela Resolução CONAMA 357/05, para enquadramento de rios em classe 2.

Cumpre ressaltar que esta análise foi baseada em dados de uma única campanha de coleta, centralizada principalmente no mês de janeiro de 2021.

O tempo de residência constitui um dos indicadores mais importantes de ponderação dos impactos, quando da transformação de ambiente lótico para lêntico, onde o recurso hídrico é impactado pela implantação de reservatórios.

O reservatório da PCH Canoas se caracteriza por um reduzido volume de armazenamento, com tempo de residência inferior a 1 dia, característica que o classifica como um ambiente assemelhado a lótico.

Desta forma, conforme assinalam os resultados das simulações, a inclusão da PCH Canoas não deverá causar modificações sensíveis quanto ao regime sazonal de vazões ou alterações na qualidade da água.





# 8. ILUSTRAÇÕES

Complementam este relatório as seguintes ilustrações:

| Número                  | Nome                                                        |
|-------------------------|-------------------------------------------------------------|
| PR280-GL-40-DE-0007-R0A | Divisão de Queda - Cenário 1: Condição Atual                |
| PR280-GL-40-DE-0008-R0A | Divisão de Queda - Cenário 2: Curto Prazo (Até 2022)        |
| PR280-GL-40-DE-0009-R0A | Divisão de Queda - Cenário 3: Média Prazo (Até 2030)        |
| PR280-GL-40-DE-0010-R0A | Divisão de Queda - Cenário 4: Longo Prazo (Até 2030)        |
| PR280-GL-40-DE-0011-R0A | Perfil da Linha d'Água de Referência                        |
| PR280-GL-40-DE-0013-R0A | Localização das Seções - Planta - Fl.1/2                    |
| PR280-GL-40-DE-0014-R0A | Localização das Seções - Planta - Fl.2/2                    |
| PR280-GL-40-DE-0015-R0A | Mapa de Inundações - Cenário Atual - Fl. 1/9                |
| PR280-GL-40-DE-0016-R0A | Mapa de Inundações - Cenário Atual - Fl. 2/9                |
| PR280-GL-40-DE-0017-R0A | Mapa de Inundações - Cenário Atual - Fl. 3/9                |
| PR280-GL-40-DE-0018-R0A | Mapa de Inundações - Cenário Atual - Fl. 4/9                |
| PR280-GL-40-DE-0019-R0A | Mapa de Inundações - Cenário Atual - Fl. 5/9                |
| PR280-GL-40-DE-0020-R0A | Mapa de Inundações - Cenário Atual - Fl. 6/9                |
| PR280-GL-40-DE-0021-R0A | Mapa de Inundações - Cenário Atual - Fl. 7/9                |
| PR280-GL-40-DE-0022-R0A | Mapa de Inundações - Cenário Atual - Fl. 8/9                |
| PR280-GL-40-DE-0023-R0A | Mapa de Inundações - Cenário Atual - Fl. 9/9                |
| PR280-GL-40-DE-0024-R0A | Mapa de Inundações - Cenário Curto Prazo - Fl. 1/9          |
| PR280-GL-40-DE-0025-R0A | Mapa de Inundações - Cenário Curto Prazo - Fl. 2/9          |
| PR280-GL-40-DE-0026-R0A | Mapa de Inundações - Cenário Curto Prazo - Fl. 3/9          |
| PR280-GL-40-DE-0027-R0A | Mapa de Inundações - Cenário Curto Prazo - Fl. 4/9          |
| PR280-GL-40-DE-0028-R0A | Mapa de Inundações - Cenário Curto Prazo - Fl. 5/9          |
| PR280-GL-40-DE-0029-R0A | Mapa de Inundações - Cenário Curto Prazo - Fl. 6/9          |
| PR280-GL-40-DE-0030-R0A | Mapa de Inundações - Cenário Curto Prazo - Fl. 7/9          |
| PR280-GL-40-DE-0031-R0A | Mapa de Inundações - Cenário Curto Prazo - Fl. 8/9          |
| PR280-GL-40-DE-0032-R0A | Mapa de Inundações - Cenário Curto Prazo - Fl. 9/9          |
| PR280-GL-40-DE-0033-R0A | Mapa de Inundações - Cenário Médio e Longo Prazos - Fl. 1/9 |
| PR280-GL-40-DE-0034-R0A | Mapa de Inundações - Cenário Médio e Longo Prazos - Fl. 2/9 |
| PR280-GL-40-DE-0035-R0A | Mapa de Inundações - Cenário Médio e Longo Prazos - Fl. 3/9 |
| PR280-GL-40-DE-0036-R0A | Mapa de Inundações - Cenário Médio e Longo Prazos - Fl. 4/9 |
| PR280-GL-40-DE-0037-R0A | Mapa de Inundações - Cenário Médio e Longo Prazos - Fl. 5/9 |
| PR280-GL-40-DE-0038-R0A | Mapa de Inundações - Cenário Médio e Longo Prazos - Fl. 6/9 |
| PR280-GL-40-DE-0039-R0A | Mapa de Inundações - Cenário Médio e Longo Prazos - Fl. 7/9 |
| PR280-GL-40-DE-0040-R0A | Mapa de Inundações - Cenário Médio e Longo Prazos - Fl. 8/9 |



| Número                  | Nome                                                        |
|-------------------------|-------------------------------------------------------------|
| PR280-GL-40-DE-0041-R0A | Mapa de Inundações - Cenário Médio e Longo Prazos - Fl. 9/9 |
| PR280-GL-40-DE-0042-R0A | Seções - Perfis - Fl. 1/16                                  |
| PR280-GL-40-DE-0043-R0A | Seções - Perfis - Fl. 2/16                                  |
| PR280-GL-40-DE-0044-R0A | Seções - Perfis - Fl. 3/16                                  |
| PR280-GL-40-DE-0045-R0A | Seções - Perfis - Fl. 4/16                                  |
| PR280-GL-40-DE-0046-R0A | Seções - Perfis - Fl. 5/16                                  |
| PR280-GL-40-DE-0047-R0A | Seções - Perfis - Fl. 6/16                                  |
| PR280-GL-40-DE-0048-R0A | Seções - Perfis - Fl. 7/16                                  |
| PR280-GL-40-DE-0049-R0A | Seções - Perfis - Fl. 8/16                                  |
| PR280-GL-40-DE-0050-R0A | Seções - Perfis - Fl. 9/16                                  |
| PR280-GL-40-DE-0051-R0A | Seções - Perfis - Fl. 10/16                                 |
| PR280-GL-40-DE-0052-R0A | Seções - Perfis - Fl. 11/16                                 |
| PR280-GL-40-DE-0053-R0A | Seções - Perfis - Fl. 12/16                                 |
| PR280-GL-40-DE-0054-R0A | Seções - Perfis - Fl. 13/16                                 |
| PR280-GL-40-DE-0055-R0A | Seções - Perfis - Fl. 14/16                                 |
| PR280-GL-40-DE-0056-R0A | Seções - Perfis - Fl. 15/16                                 |
| PR280-GL-40-DE-0057-R0A | Seções - Perfis - Fl. 16/16                                 |
| PR280-GL-40-DE-0058-R0A | Localização dos Postos Fluviométricos                       |

