

RELATÓRIO DA DE MONITORAMENTO DA ICTIOFAUNA

PERÍODO PÓS-ENCHIMENTO

- UHE MONJOLINHO -

OUTUBRO DE 2020.

APRESENTAÇÃO

Este documento apresenta os resultados cumulativos de dezoito campanhas de monitoramento da comunidade de peixes e de ictioplâncton na área de influência da Usina Hidrelétrica (UHE) Monjolinho, localizada em Nonoai, Rio Grande do Sul, nos rios Passo Fundo e Erechim. Os resultados e as conclusões apresentados têm como base os dados referentes às campanhas desenvolvidas entre 2012 e 2020, fase de pós-enchimento do reservatório.

SUMÁRIO

1. RESPONSÁVEL TÉCNICO	4
2. COMUNIDADE DE PEIXES	5
2.1 Objetivos	6
2.2 Material e Métodos	6
2.3 Procedimentos de Campo e Análises	11
2.4 Resultados	17
3. CONCLUSÕES	50
4. TOMBAMENTO DO MATERIAL	53
5. BIBLIOGRAFIA	54

1. RESPONSÁVEL TÉCNICO

Biól. Msc. Lucas de Fries – CRBio 58586/RS

2. COMUNIDADE DE PEIXES

A região Neotropical (América do Sul e Central) é a região do planeta com maior riqueza de espécies de peixes de água doce, com número estimado entre 6.025 e 8.000 espécies (Schaefer, 1998; Malabarba *et al.*, 2013). O Brasil também se destaca pela sua elevada riqueza e diversidade de peixes de água doce. Na última compilação de espécies publicada, foram relacionadas 2.587 espécies de peixes para as bacias hidrográficas do país (Buckup *et al.*, 2007).

Os peixes de água doce do Rio Grande do Sul são distribuídos entre três principais drenagens: sistema da Laguna dos Patos, sistema do rio Tramandaí e sistema hidrográfico do rio Uruguai. Recentemente, através de um levantamento de dados de coleções científicas para todas essas bacias hidrográficas, Bertaco *et al.* (2016) indicam o registro de 422 espécies para o estado do Rio Grande do Sul. Deste total, 78 espécies são endêmicas do sistema do rio Uruguai.

A bacia hidrográfica do rio Uruguai possui uma área de drenagem de 365.000 km² que propiciaram a evolução de uma rica ictiofauna. Em conjunto, os rios Paraná, Paraguai e Uruguai formam a bacia do Prata, a segunda bacia mais rica em espécies de peixes da América do Sul, estando atrás apenas da bacia Amazônica (Menezes, 1996). Muitas espécies de peixes de grande porte e migradores presentes na bacia, como as dos gêneros *Salminus, Pseudoplatystoma*, *Steindachneridion* e *Prochilodus* encontram-se atualmente ameaçadas de extinção por fatores como a degradação de habitats, a sobrepesca e os barramentos que bloqueiam as migrações reprodutivas de longa distância.

Apesar dos efeitos positivos e benéficos que a construção de hidroelétricas propicia, principalmente econômicos e sociais, tanto locais quanto regionais, existem diversos efeitos negativos que os barramentos de rios podem causar, principalmente sobre o meio ambiente (Agostinho *et al.*, 1992; Tundisi *et al.*, 2008; Periotto & Tundisi, 2013). Os peixes representam, provavelmente, o componente da biodiversidade mais impactado pela construção de hidroelétricas. Dentre os efeitos negativos sobre as comunidades de peixes que a obstrução de rios acarreta podem-se listar mudanças na composição de espécies e na estrutura trófica, alterações na abundância e riqueza de espécies, potenciais extinções de populações de espécies migradoras, estímulo da sobrepesca local e favorecimento da expansão de espécies exóticas invasoras (Agostinho *et al.*, 1992; Miranda, 2012). Esses efeitos podem ser ainda mais preocupantes em regiões mega diversas e de grande endemismo como a bacia do rio Uruguai.

O rio Passo Fundo é um dos principais afluentes do rio Uruguai em sua porção superior; possui cerca de 230 km de extensão, das nascentes (localizadas no município de mesmo nome) até a foz (no município de Nonoai). Em 1973, entrou em operação a Usina Hidrelétrica de Passo Fundo, cujo reservatório possui 151 km² de área e desvia as águas para o rio Erechim, onde está localizada a casa de força da Usina. Apenas a partir de 1995, estudos sobre a ictiofauna começaram a ser desenvolvidos nesta sub-bacia, inicialmente em tributários da porção superior, como os rios Caraguatá e Butiá (Câmara & Hahn, 2002) e posteriormente no reservatório do rio Passo Fundo e em trechos a jusante (nos rios Passo Fundo e Erechim). Nos trechos inferiores, a composição da ictiofauna é bastante distinta daquela encontrada no reservatório e nos trechos superiores, devido principalmente à participação na comunidade de espécies migradoras do rio Uruguai (e.g. Salminus brasiliensis, Prochilodus lineatus, Leporinus spp.).

Em 2001 iniciou uma série de estudos no rio Passo Fundo, como parte do licenciamento da UHE Monjolinho. O Plano Básico Ambiental deste Empreendimento destacava a ocorrência de dez táxons endêmicos com distribuição restrita para a bacia do rio Uruguai, duas espécies consideradas vulneráveis à extinção no Rio Grande do Sul (DECR. 41.672/2002), uma espécie considerada ameaçada de extinção no território Federal (IN-MMA nº 5/2004) e seis espécies de peixes migradores de grandes distâncias.

A partir do ano 2009, com o alagamento da área, foi realizado o primeiro monitoramento pós-enchimento do reservatório. Os dados apresentados já indicaram que a formação do reservatório, na área de influência da UHE Monjolinho, acarretou alterações na ictiofauna do rio Passo Fundo. A seguir são apresentados dados de agosto de 2012 a outubro de 2020 sobre monitoramentos da ictiofauna da fase pósenchimento da referida UHE Monjolinho.

2.1 Objetivos

Descrever a estrutura da comunidade de peixes nos rios Passo Fundo e Erechim, na área de influência da UHE Monjolinho, após o enchimento do reservatório, e avaliar potenciais efeitos negativos sobre a ictiofauna.

2.2 Material e Métodos

2.2.1 Área em Estudo

As unidades amostrais localizam-se nos rios Passo Fundo e Erechim, na Área Diretamente Afetada (ADA) e na Área de Influência Direta (AID) da Monjolinho, no

município de Nonoai – RS, e totalizam seis pontos de amostragem (Figura 1; Tabela 1).

2.2.2 Área Diretamente Afetada (ADA)

Essa área compreende os trechos dos rios Passo Fundo e Erechim e seus tributários que foram inundados parcial ou totalmente com a formação do reservatório.

2.2.3 Área de Influência Direta (AID)

Essa área circunscreve a área diretamente afetada, de modo que compreende os trechos dos rios Passo Fundo e Erechim e seus tributários que são afetados ou impactados pelo Empreendimento. Também contempla os trechos a jusante e montante do reservatório.

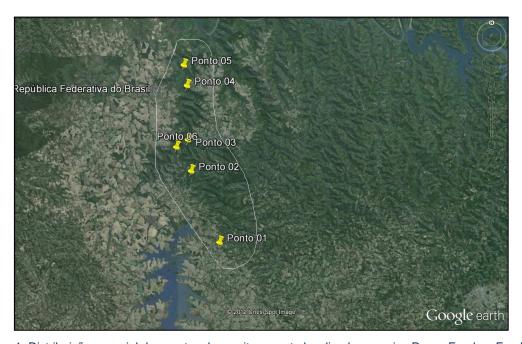


Figura 1. Distribuição espacial dos pontos de monitoramento localizados nos rios Passo Fundo e Erechim, na área de influência da UHE Monjolinho, no Rio Grande do Sul.

Tabela 1.. Coordenadas geográficas dos pontos amostrais do Monitoramento da Ictiofauna.

Pontos de Amostragem	Coordenadas UTM
Ponto 1. Rio Erechim, montante do barramento, trecho de rio livre	334658E, 6946965S
Ponto 2. Rio Erechim, próximo à casa de máquinas da UHE Passo Fundo	329780E, 6959416S*
Ponto 3. Reservatório, confluência do rio Erechim e rio Passo Fundo	329375E, 6964075S
Ponto 4. Rio Passo Fundo, reservatório	329344E, 6972265S*

Ponto 5. Rio Passo Fundo, jusante da barragem	329027E, 6974956S*
Ponto 6. Rio Passo Fundo, final da cota de inundação da UHE Monjolinho	327645E, 6962909S

^{*}Coordenada geográfica retificada (o local e o habitat de monitoramento permaneceram o mesmo dos demais relatórios).

2.2.4 Caracterização dos Pontos Amostrais

Ponto 01 - Rio Erechim, à montante da área do barramento. Tem aproximadamente 50 m de largura, profundidade entre 0 e 2 m, água turva, velocidade de fluxo média, fundo com laje, pedras, areia, lodo. Faixa ripária estreita, formada por pequenas árvores e arbustos e plantações agrícolas (Foto 1).

Foto 1. Vista parcial do ponto 1 localizado no rio Erechim, próximo à localidade Vila União, na área de influência direta da UHE Monjolinho, em Nonoai, RS. *Nesta campanha, por questões de segurança devido a forte correnteza ocasionada pela chuva, as redes de espera foram armadas a 50m a jusante do ponto.

Ponto 02 - Rio Erechim, próximo à saída de água turbinada pela UHE Passo Fundo, município de Nonoai, RS. Tem aproximadamente 30 m de largura, profundidade variando entre 0 e 2,5 m, água moderadamente turva, velocidade do fluxo média, fundo com laje, pedras, areia, lodo e sem vegetação aquática. Vegetação ripária densa e preservada, formada por árvores e arbustos (Foto 2).

Foto 2. Vista parcial do ponto 2 localizado no rio Erechim, próximo à saída de água da UHE Passo Fundo, na área diretamente afetada da UHE Monjolinho, em Nonoai, RS.

Ponto 03 – Na confluência dos rios Passo Fundo e Erechim, área alagada pela UHE Monjolinho. Tem cerca de 80 m de largura, profundidade variando entre 0 e 10 m, água turva, baixa velocidade de fluxo, fundo areia e lodo e sem vegetação aquática. Mata ciliar densa, formada por árvores e arbustos (Foto 3).

Foto 3. Vista parcial do ponto localizado no encontro dos rios Passo Fundo e Erechim, na área diretamente afetada da UHE Monjolinho, em Nonoai, RS.

Ponto 04 – Rio Passo Fundo, próximo à barragem da UHE Monjolinho, na área alagada pela barragem. Tem aproximadamente 200 m de largura, profundidade variando entre 0 e 30 m, água moderadamente turva, baixa velocidade de fluxo, fundo areia e lodo e sem vegetação aquática. Vegetação ripária densa formada por árvores e arbustos (Foto 4).

Foto 4. Vista parcial do ponto localizado no rio Passo Fundo, a montante e próximo à barragem, na área diretamente afetada da UHE Monjolinho, em Nonoai, RS.

Ponto 05 – Rio Passo Fundo, a jusante da barragem da UHE Monjolinho. Local com aproximadamente 80 m de largura, profundidade variando entre 0 e 3 m, águas claras, alta velocidade de fluxo, fundo pedras e areia, sem vegetação aquática. A vegetação ciliar foi retirada quase por completo, formada apenas por pequenas árvores e arbustos (Foto 5).

Foto 5. Vista parcial do ponto localizado no rio Passo Fundo, a jusante e próximo à barragem, na área diretamente afetada da UHE Monjolinho, em Nonoai, RS.

Ponto 06 – Rio Passo Fundo, a montante da confluência dos rios Passo Fundo e Erechim, ao final da área alagada. Tem aproximadamente 20 m de largura, profundidade entre 0 e 2 m, água levemente turva, velocidade de fluxo média, fundo pedras, areia e lodo, sem vegetação aquática. Vegetação ripária densa formada por árvores e arbustos (Foto 6).

Foto 6. Vista parcial do ponto localizado no rio Passo Fundo, acima da confluência dos rios Passo Fundo e Erechim, na área diretamente afetada da UHE Monjolinho, Nonoai, RS.

2.3 Procedimentos de Campo e Análises

2.3.1 Ictiofauna

As técnicas de coleta e procedimentos de campo para a captura da ictiofauna seguiram os métodos usualmente empregados em pesquisas ictiológicas. As capturas foram realizadas com baterias de redes de espera de malha simples (1 a 10 cm entre nós); com dois espinhéis de 20 anzóis (2/0); com duas tarrafas (5 e 15 m de diâmetro); e com um puçá (1,0 m x 1,0 m e 0,5 mm de malha). As redes de espera com 10 m de comprimento e 1,5 m de altura, totalizando 270 m² de área, foram empregadas em todas as unidades amostrais, permanecendo dispostas na água por aproximadamente 12 horas. O esforço amostral foi reduzido de 24h para 12h de exposição de redes de espera porque em alguns pontos isso significava uma mortalidade excessiva de indivíduos devido à elevada captura, principalmente durante o dia. Assim, o esforço de 12h, do final da tarde até a manhã do dia seguite, foi suficiente para documentar espécies de hábito noturno e diurno sem causar grande impacto às populações. Os dois espinhéis iscados com peixes (lambaris) foram armados próximos aos locais das redes de espera no final da tarde e início da manhã seguinte, permanecendo na água por aproximadamente 12 horas. As redes e os espinhéis foram colocados com auxílio de um barco de alumínio de 4 m com motor de 15 HP. O puçá foi empregado aleatoriamente onde havia condições propícias para utilização desse apetrecho de pesca. As tarrafas também foram empregadas em ambientes que permitiram o uso dessa arte de pesca (remansos). Os lances de tarrafa foram executados aleatoriamente, na tentativa de explorar os mais variados ambientes em cada unidade de amostragem.

Os dados pertinentes à coleta foram anotados em campo, incluindo, por exemplo, número de ponto, local de coleta, coletores, coordenadas geográficas, aparelho de pesca, malha do artefato de pesca, duração da coleta, hora, data e observações gerais.

Os peixes foram identificados e contabilizados em campo e soltos no local de captura, com exceção de alguns espécimes para confirmação de identificação. Esse material foi fixado em formol a 10% e armazenado em sacos plásticos.

A nomenclatura para a identificação das espécies seguiu as seguintes obras: "Catálogo das espécies de peixes de água doce do Brasil" (Buckup et al., 2007); "Check list of catfishes" (Ferraris, 2007); "Check list of the freshwater fishes of South and Central America" (Reis et al., 2003); atualizadas por consultas ao "Catalog of Fishes", versão online, de Eschmeyer et al. (2017).

Análise das gônadas e grupos tróficos

Para a análise das gônadas foram selecionadas as espécies mais abundantes, com mais de 10 exemplares capturados. Esses indivíduos foram medidos (comprimento padrão e total, cm), pesados (peso total, g), fotografados e seccionados para a identificação do sexo e análise do estágio de maturação das gônadas. Tais estádios foram atribuídos macroscopicamente levando-se em consideração as seguintes características das gônadas: turgidez, irrigação, coloração, posição na cavidade abdominal e grau de visualização dos ovócitos (para as fêmeas), conforme adaptação baseada na escala proposta por Vazzoler (1996):

- Imaturos ovários finos e transparentes, pequeno volume, contendo apenas ovócitos jovens;
- Maturação ovários volumosos, aumento da vascularização e com alguns ovócitos visíveis a olho nu, ocupando discreto volume da cavidade celomática.
- Reprodução dividida em:

<u>Maduro</u>: ovários amarelos, volume máximo, vascularização evidente, ovócitos visíveis a olho nu, ocupando grande parte da cavidade celomática.

- <u>Semi-esgotado</u>: ovários hemorrágicos e flácidos, com raros ovócitos opacos e visíveis a olho nu.
- ➤ Repouso ovários finos, mas mais largos que os imaturos, transparentes, pequeno volume, contendo apenas ovócitos jovens.

A categoria trófica de cada espécie amostrada foi determinada com base em análises prévias do conteúdo estomacal das espécies e a partir de dados da literatura, sendo as espécies classificadas em:

- Herbívoras: peixes que consomem partes de vegetais superiores, tais como, folhas, talos, sementes e frutos, ou algas filamentosas (Hahn et al.,1997).
- Detritívoras: peixes que consomem o alimento obtido em depósitos de fundo, ingerindo grande quantidade de matéria orgânica vegetal (Hahn et al., 1997).
- Onívoras: peixes que consomem indistintamente desde algas (unicelulares e filamentosas) até vegetais superiores e desde invertebrados até peixes (Hahn et al.,1997).
- Bentófagas: peixes que consomem o alimento no fundo, ingerindo junto considerável quantidade de sedimento. Os itens predominantes são tecamebas, rotíferos, nematóides, microcrustáceos, moluscos e pequenas larvas de insetos (Hahn et al.,1997).
- Insetívoras: peixes que consomem, essencialmente, formas larvais ou ninfas aquáticas e insetos, mas também insetos que terrestres, tendo como componentes predominantes na dieta os quironomídeos, tricópteros e efemerópteros ou efemerópteros recém-emergidos, coleópteros e hemípteros (Hahn et al.,1997).
- Invertívoras: peixes que consomem uma variedade de invertebrados, principalmente artrópodos, mas também bivalves, gastrópodes, moluscos, nematódos e rotíferos (Agostinho et al., 2010).
- Piscívoras: peixes que consomem outros peixes, inteiros ou em pedaços, podendo complementar sua dieta com outros itens, geralmente insetos (Hahn et al.,1997).

Análise dos dados

Os indicadores adotados para o monitoramento da comunidade de peixes foram: riqueza, equitabilidade, diversidade, CPUE, constância, similaridade, proporção sexual e tamanho (porte):

✓ Riqueza de Espécies

$$E_D = S_{obs} + S_1(f-1/f)$$

Onde: S_{obs} = número de espécies observadas; S_1 = o número de espécies que está presente somente em um agrupamento (espécie de um agrupamento) e f = o número de agrupamento que contém iesima espécie de um agrupamento.

√ Índices de Equitabilidade J

J = H'/Hmax'

Onde: H´ é o Índice de Shannon Wiener e Hmax´ é dado pela seguinte expressão: H_{max´} = Log _s.

✓ Índice de Diversidade de Shannon

$$H' = -\sum pi Log$$

Onde: pi é a proporção da espécie em relação ao número total de espécies encontradas nos levantamentos realizados.

✓ CPUE

A captura por unidade de esforço (CPUE) em número de indivíduos (CPUEn = n° de ind./270 m^{2} /24h) e de biomassa (CPUEb = $g/270m^{2}/24h$) foram calculadas apenas para o uso das redes de malha simples.

✓ Composição em tamanho corporal (porte)

O comprimento total (CT) e o comprimento padrão (CP), em centímetros, foram medidos para alguns exemplares representativos de cada espécie capturada. Esses dados em conjunto com dados da literatura foram utilizados para determinar o porte das espécies coletadas, conforme a classificação abaixo (Tabela 2):

Tabela 2. Variação da composição por tamanho.

Variação do tamanho (cm)	Porte
Menores de 25,0	Pequeno
Entre 25,1-50,0	Médio
Maiores de 50,1	Grande

✓ Constância das espécies

As espécies foram classificadas em três categorias conforme a sua constância na comunidade amostrada: constante, acessória ou acidental. O critério para esta classificação foi baseado no percentual do número de amostras em que a espécie ocorreu em relação ao número total de amostras efetuadas. Assim, a espécie foi

considerada constante quando esteve presente em mais de 50% das amostras, acessória quando ocorreu entre 25 e 50% e acidental quando esteve presente em menos de 25% das amostras efetuadas (Dajoz, 1983).

√ Índice Similaridade

Para avaliar a similaridade entre os pontos foi calculado o Índice de Similaridade de Sorensen. Uma análise de agrupamento (cluster) foi elaborada pelo método UPGMA.

IS = 2j/(a+b)

Onde: IS = índice de similaridade; j = número de espécies em comum; a + b = número de espécies em dois pontos.

✓ Proporção sexual

O teste do qui-quadrado (χ^2) foi usado para testar as diferenças na proporção sexual entre machos e fêmeas das espécies registradas na área de influência da UHE Monjolinho.

2.3.2 Ictioplâncton

Na presente campanha, a coleta do ictioplâncton (ovos e larvas) foi realizada em três unidades amostrais, uma a jusante (Ponto 5) e os outros dois a montante da barragem (Pontos 2 e 6), na área de influência da UHE Monjolinho. Para a captura de ovos e larvas foi utilizada uma rede de plâncton cônico-cilíndrica com malha de 0,5 mm e fluxômetro acoplado (Modelo 2030R) de superfície.

Os dados obtidos incluíram número de campo, local de coleta, coletores, coordenadas geográficas, aparelho de pesca, duração da coleta, hora, data, número de rotação do fluxômetro, fator de calibração do fluxômetro e observações gerais.

O material coletado foi fixado em formol a 10 % e armazenado em potes plásticos identificados com o número de campo. Utilizando um estereomicroscópio (lupa) o material foi triado para a identificação e quantificação dos ovos e das larvas.

A migração de peixes migradores de longa distância (p.ex. dourado e grumatã) engloba movimentos ascendentes de indivíduos adultos para trechos superiores da bacia hidrográfica em busca de habitats para a desova. Após a desova, os peixes adultos retornam para trechos inferiores da bacia hidrográfica (Petrere *et al.*, 1985; Agostinho *et al.*, 2003), assim como as larvas que são carregadas pelo fluxo da água

e os ovos acabam se desenvolvendo nas áreas de crescimento em zonas inferiores. Entretanto, com a formação de reservatórios, essa passagem de larvas e ovos para esses trechos de crescimento a jusante da barragem é prejudicada (Pompeu et al., 2011). Estudos em grandes reservatórios indicam que ocorre um desaparecimento de ovos e larvas em partes inferiores dentro do reservatório, porque pela transformação de sistema lótico em lêntico, os ovos e larvas tornam-se presas fáceis de predadores, além de afundarem nos ambientes mais profundos do reservatório que geralmente são ambientes sem oxigênio para o desenvolvimento do ictioplâncton (Agostinho & Gomes, 1997). Assim, o delineamento amostral para a coleta de ovos e larvas deve considerar trechos superiores dentro reservatório (zonas fluviais que possuem característica similar ao rio orginal) e a jusante da barragem, pois a coleta de ovos e larvas em trechos superiores do reservatório não quer dizer que os peixes estão conseguindo realizar o recrutamento completo, pois os ovos e larvas precisam passar por todo o ambiente do reservatório para consequirem se desenvolver em zonas de crescimento a jusante da barragem. Além disso, De Fries (2013) pela técnica de radiotelementria, demonstrou que a maioria dos indivíduos de uma espécie migradora ameaçada de extinção (Salminus brasiliensis) e que foram transpostos manualmente para dentro do reservatório da UHE Monjolinho, mantiveram-se no final do reservatório (Ponto 2), rio Erechim, junto a descarga de água da casa de máquinas da UHE Passo Fundo, principalmente no verão (época reprodutiva da maioria dos peixes migradores neotropicais). Dessa maneira, levando em consideração o comportamento de movimentação reprodutiva de peixes migradores de longa distância e o estudo realizado por De Fries (2013) onde a maioria dos indivíduos mantiveram-se no limite do reservatório (Ponto 2) durante a época reprodutiva, a realização de coleta no ponto 4 (zona de maior produndidade dentro do reservatório UHE Monjolinho e sem nenhuma característica de ambiente para peixes migradores realizarem a desova) foi excluída para coleta de ictioplâncton. Assim, mantiveram-se as unidades amostrais: 2 (rio Erechim, próximo a casa de força da UHE Passo Fundo), 5 (jusante da barragem) e 6 (rio Passo Fundo, final do reservatório).

2.3.3 Periodicidade dos monitoramentos

As campanhas foram realizadas sazonalmente, conforme detalhado na Tabela 3.

Tabela 3. Datas das campanhas de monitoramento da fase pós-enchimento da ictiofauna da área de influência da UHE Monjolinho, RS.

Campanha	Período	Estação sazonal
1 ^a	Agosto de 2012	Inverno
2 ^a	Outubro de 2012	Primavera
3 ^a	Dezembro de 2012	Verão
4 ^a	Março de 2013	Verão
5 ^a	Junho de 2013	Outono
6 ^a	Agosto de 2013	Inverno
7 ^a	Setembro de 2015	Primavera
8 ^a	Março de 2016	Verão
9 ^a	Junho de 2016	Outono
10 ^a	Janeiro de 2017	Verão
11 ^a	Junho de 2017	Outono
12 ^a	Outubro de 2017	Primavera
13 ^a	Abril de 2018	Outono
14 ^a	Outubro de 2018	Primavera
15 ^a	Abril de 2019	Outono
16 ^a	Novembro de 2019	Primavera
17 ^a	Maio de 2020	Outono
18 ^a	Outubro de 2020	Primavera

2.4 Resultados

2.4.1 Ictiofauna

Composição geral da comunidade de peixes

O somatório das 18 campanhas sazonais de monitoramento da ictiofauna na fase pós-enchimento da UHE Monjolinho resultou num total de 58 espécies de peixes, distribuídas em 18 famílias e sete ordens (Tabela 4).

As ordens que mais se destacaram em número de espécies ao longo deste período amostral foram os Characiformes (por exemplo: lambaris, traíras, dourado, grumatã), com 24 spp. (41%), e os Siluriformes (por exemplo: bagres, cascudos), com 19 spp. (28%), seguidos da ordem Cichliformes (por exemplo: joanas, carás), com oito espécies (14,2%). As famílias de Characiformes que mais se destacaram nos monitoramentos em número de espécies foram Characidae (13 spp.), Erythrinidae (3 spp.), Anostomidae (3 spp.) e Curimatidae (2 spp.). Entre os Siluriformes, se destacaram as famílias Loricariidae (10 spp.), Pimelodidae (5 spp.) e Heptapteridae (3 spp.). Entre os Cichliformes, a família Cichlidae foi a mais especiosa (8 spp.),

enquanto que entre os Gymnotiformes foi a família Sternopygidae (2 spp.). Os Cypriniformes foram representados pela família das carpas, Cyprinidae (2 spp.). Atherinopsidae (1 sp.) foi a única família representante de Atheriniformes (Figura 2).

Especificamente em relação a presente campanha, de outubro de 2020, foram capturados 282 indivíduos, pertencentes a 30 espécies, 13 famílias e cinco ordens. Semelhante ao padrão geral, houve dominância das ordens Characiformes e Siluriformes, com 14 e 9 spp., respectivamente (Tabela 5, Figura 3). Em relação às famílias, Loricaridae e Characidae foram as mais representativas, 6 spp e 6 spp., respectivamente (Figura 3).

Tabela 4. Relação das espécies de peixes capturadas na área de influência da UHE Monjolinho, rios Passo Fundo e Erechim. RS. *Nome atualizado. ²Espécie provavelmente ainda não descrita.

Ordem	Família	Espécie	Nome comum	Categoria	Comportamento migrador
CYPRINIFORMES	Cyprinidae	Ctenopharingodon idella	carpa- comum	exótica	Não
	Сурппаас	Cyprinus carpio	carpa- húngara	exótica	Não
	Parodontidae	Apareiodon affinis	canivete	nativa	Não
	Curimatidae	Cyphocharax voga	birú	nativa	Não
	Culmandae	Steindachnerina brevipinna	birú	nativa	Não
	Prochilodontidae	Prochilodus lineatus	grumatã	nativa	Sim
		Leporinus amae	perna-de moça	nativa	Não
	Anostomidae	Megaleporinus obtusidens*	piava	nativa	Não
		Schizodon nasutus	voga	nativa	Sim
	Characidae	Astyanax lacustris*	lambari	nativa	Não
		Astyanax sp. 1 (op) ²	lambari	nativa	Não
		Astyanax sp. 2 (og) ²	lambari	nativa	Não
		Astyanax sp. 3 (baixo e longo) ²	lambari	nativa	Não
CHARACIFORMES		Astyanax sp. 4 (nad. verm.) ²	lambari	nativa	Não
		Bryconamericus iheringii	lambari	nativa	Não
		Bryconamericus patriciae	lambari	nativa	Não
		Galeocharax humeralis*	dentudo	nativa	Não
		Oligosarcus brevioris	tambicu	nativa	Não
		Oligosarcus jenynsii	tambicu	nativa	Não
		Oligosarcus oligolepis	tambicu	nativa	Não
		Salminus brasiliensis	dourado	nativa	Sim
	Serrasalmidae	Serrasalmus maculatus	piranha	nativa	Não
•	Acestrorhynchidae	Acestrorhynchus pantaneiro	peixe- cachorro	nativa	Não
		Hoplias australis	traíra	nativa	Não
	Erythrinidae	Hoplias lacerdae	traíra	nativa	Não
		Hoplias malabaricus	traíra	nativa	Não
SILURIFORMES	Loricariidae	Ancistrus taunayi	cascudo	nativa	Não

Ordem	Família	Família Espécie		Categoria	Comportamento migrador
		Hemiancistrus fuliginosus	cascudo	nativa	Não
		Hemianncistrus votouro	cascudo	nativa	Não
		Hypostomus spiniger*	cascudo	nativa	Não
		Hypostomus isbrueckeri	cascudo	nativa	Não
		Hypostomus luteus	cascudo	nativa	Não
		Hypostomus roseuponctatus	cascudo	nativa	Não
		Loricariichthys anus	cascudo- viola	nativa	Não
		Paraloricaria vetula	cascudo- viola	nativa	Não
<u>-</u>		Rineloricaria zaina	violinha	nativa	Não
		Pimelodella australis	mandí	nativa	Não
	Heptapteridae	Rhamdella longiuscula	jundiá-cipó	nativa	Não
		Rhamdia sp.²	jundiá	nativa	Não
	Ictaluridae	Ictalurus punctatus	bagre	exótica	Não
	Pimelodidae	Iheringichthys labrosus	bicudo	nativa	Não
		Pimelodus atrobunneus	pintado	nativa	Não
		Pimelodus absconditus	pintado	nativa	Não
		Pimelodus maculatus*	pintado	nativa	Sim
		Steindachneridion scriptum	suruvi	nativa	Sim
GYMNOTIFORMES -	Gymnotidae	Gymnotus inaequilabiatus	tuvira	nativa	Não
GTWINOTH ORIVIES -	Sternopygidae	Eigenmannia virescens	tuvira	nativa	Não
ATHERINIFORMES	Atherinopsidae	Odonthesthes yucuman*	peixe-rei	nativa	Não
PERCIFORMES	Sciaenidae	Pachyurus bonariensis	corvina-de- rio	exótica	Não
		Australoheros forquilha	cará	nativa	Não
		Crenicichla celidochilus	joana	nativa	Não
		Crenicichla jurubi	joana	nativa	Não
CICHLIFORMES	0	Crenicichla minuano	joana	nativa	Não
	Cichlidae	Crenicichla missioneira	joana	nativa	Não
		Crenicichla tendybaguassu	joana	nativa	Não
		Geophagus iporangensis*	cará	nativa	Não
		Gymnogeophagus lipokarenos	cará	nativa	Não

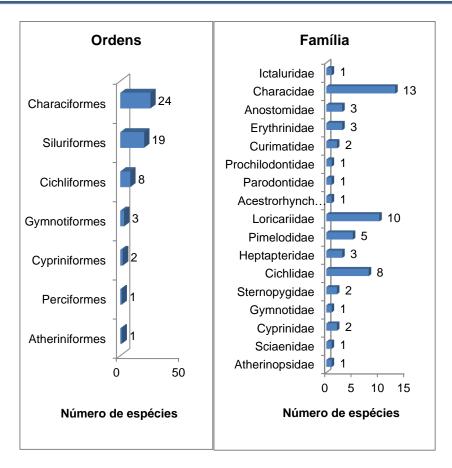


Figura 2. Somatório do número de espécies por ordem e por família registradas nas dezoito campanhas de monitoramento da ictiofauna na área de influência da UHE Monjolinho, pós-enchimento.

Tabela 5. Espécies, abundância, riqueza, diversidade e equitabilidade da ictiofauna da 18ª campanha de monitoramento da área de influência da UHE Monjolinho, rios Passo Fundo e Erechim, RS.

Espécie	P1	P2	P3	P4	P5	P6
Acestrorhyncus pantaneiro		1		8	1	25
Apareiodon affinis				1	8	
Astyanax lacustris		1			7	
Astyanax sp. (OG)		1	1	1	12	
Astyanax sp. (OP)		1			12	
Astyanax sp. 3					2	
Crenicichla celidochylus				1		
Crenicichla tendybaguassu					1	
Crenicichla minuano				1		
Crenicichla missioneira				1	1	3
Cyphocarax voga		1				
Eigenmania trilineata					1	1
Geophagus iporangensis	1				2	
Hemiancistrus fuliginosus	39					
Hemiancistrus votouro	15					
Hoplias lacerdae				1		
Hypostomus isbrueckeri	17			1		1
Hypostomus luteus	4					
Hypostomus spiniger			1			
Iheringichthys labrosus		7		1	2	5
Leporinus amae						3
Loricarichthys anus		2		2		13
Odonthestes yucuma		7				
Oligosarcus jenynsii		2				
Oligosarcus oligolepis		4		1	4	
Pimelodus atrobunneus		4				
Rhamdia sp.	1	1				
Schizodon nasutus		12		2	2	
Serrasalmus maculatus						2
Steindachnerina brevipinna		3		7	4	16
Riqueza de espécies	6	14	2	13	14	9
Indice de diversidade	1.263	2.271	0.6931	2.153	2.272	1.709
Indice de equitabilidade	0.5894	0.6921	1	0.6621	0.6927	0.614
Abundância total	77	47	2	28	59	69

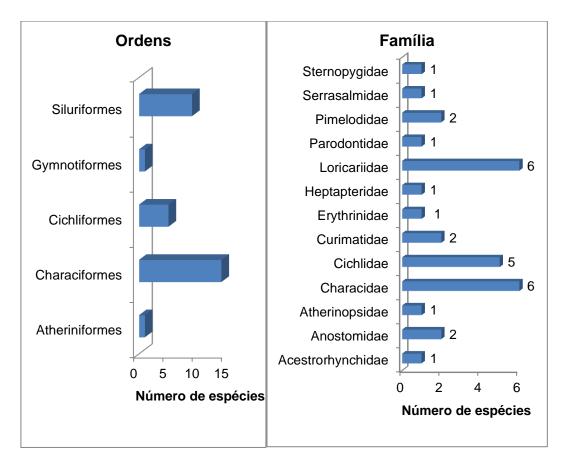
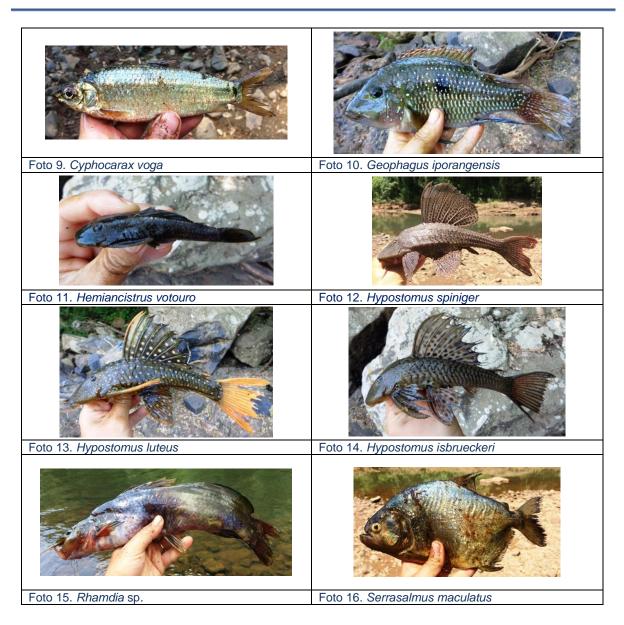


Figura 3. Número de espécies por ordem e por família registrado na 18ª campanha de monitoramento da ictiofauna na área de influência da UHE Monjolinho, fase pós-enchimento.


As fotos 7 a 16 são representativas das espécies capturadas na 18ª campanha de monitoramento da ictiofauna, outubro de 2020, na área de influência de UHE Monjolinho:

LIHE MONIOLINHO

Comunidade por ponto amostral

A seguir são apresentados os dados de riqueza, diversidade, equitabilidade, CPUE e porte por ponto amostral ao longo das dezoito campanhas de monitoramento da ictiofauna da área de influência da UHE Monjolinho:

✓ Riqueza

A riqueza média dos pontos amostrados foi de 6,90 espécies. Porém, houve grande variação deste valor, entre zero e 27 espécies. O ponto 5, a jusante da barragem, exibiu a maior média de espécies, com 11,44 spp. Por outro lado, o ponto 1,

THE Management of the second o

o mais a montante do barramento, apresentou a menor média, com apenas 4,27 spp. (Figura 4; Tabela 6).

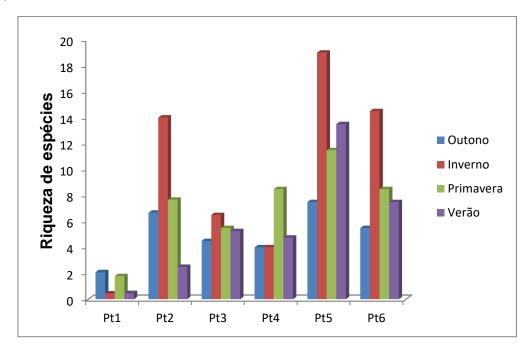


Figura 4. Riqueza média de espécies de peixes - pós-enchimento da UHE Monjolinho.

Tabela 6. Valores mínimos, máximos e médias das riquezas de espécies de peixes nas campanhas pósenchimento do reservatório da UHE Monjolinho.

Sítio amostral	Mínimo	Máximo	Média
Ponto 1	0	9	4,27
Ponto 2	0	15	6,88
Ponto 3	2	9	5,22
Ponto 4	1	13	5,66
Ponto 5	2	27	11,44
Ponto 6	2	16	7,94

✓ Diversidade de Shannon-Wiener (H)

O índice de diversidade médio dos pontos foi de 1,02. Este valor oscilou entre 0 e 2,31. Os pontos 5 e 6 exibiram os maiores valores médios de diversidade, 1,27 e 1,12 respectivamente. O ponto 1 exibiu os menores valores, com uma média de 0,79 (Figura 5; Tabela 7).

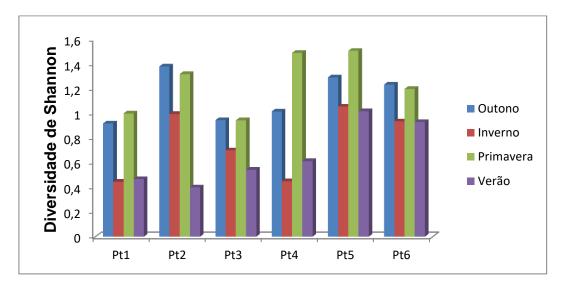


Figura 5. Variação do índice de diversidade de Shannon das comunidades de peixes dos pontos amostrados nas campanhas pós-enchimento do reservatório da UHE Monjolinho. Os valores representam as médias entre as estações em cada ponto.

Tabela 7. Valores mínimos, máximos e médios do índice de diversidade de Shannon das comunidades de peixes das campanhas da fase pós-enchimento do reservatório da UHE Monjolinho.

Sítio	Mínimo	Máximo	Média
Ponto 1	0,00	1,96	0,79
Ponto 2	0,00	2,27	1,09
Ponto 3	0,44	1,48	0,82
Ponto 4	0,00	2,15	1,02
Ponto 5	0,14	2,31	1,27
Ponto 6	0,60	2,00	1,12

√ Equitabilidade (J)

O índice de equitabilidade se mostrou mais uniforme do que o de diversidade entre os pontos e entre os períodos amostrados. O valor médio geral da equitabilidade foi 0,77. O valor médio entre os pontos, entretanto, variou pouco, entre 0,69 e 0,81 para os pontos 1 e 6, respectivamente (Figura 6; Tabela 8).

UHE MONJOLINHO

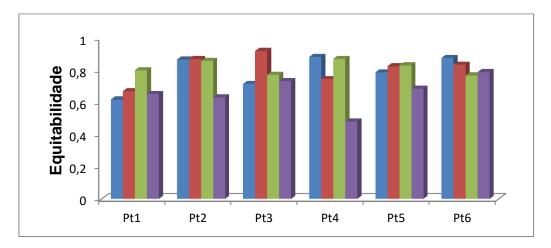


Figura 6. Valores da equitabilidade das espécies de peixes – pós-enchimento do reservatório da UHE Monjolinho. Os valores representam as médias entre as estações em cada ponto.

Tabela 8. Valores médios, mínimos, máximos e variação da equitabilidade de espécies de peixes – pósenchimento do reservatório da UHE Monjolinho.

Sítio amostral	Mínimo	Máximo	Média
Ponto 1	0,00	0,98	0,69
Ponto 2	0,00	1,00	0,81
Ponto 3	0,44	1,00	0,76
Ponto 4	0,00	1,00	0,77
Ponto 5	0,45	1,00	0,78
Ponto 6	0,60	1,00	0,81

✓ Captura por Unidade de Esforço (CPUE)

As Capturas por Unidade de Esforço (CPUE) nos pontos amostrais foram avaliadas com base nas capturas com redes de espera, onde tiveram padronização do esforço amostral e foram aplicadas em todos os pontos de captura, permitindo comparações espaço-temporais. Os resultados das capturas com rede de espera são expressos com base no número de indivíduos (CPUEn, ind/270m²/12h).

Em média, para todos os pontos, a CPUE foi de 0,008 indivíduos/m²/h. Separadamente, a CPUE evidenciou que densidade de indivíduos variou bastante entre os pontos de coleta durante as estações do ano. O ponto 5 apresentou, geralmente, a maior densidade de indivíduos, com uma média de CPUE 0,020 indivíduos/m²/h. As menores capturas foram no ponto 1 e 4, em média 0,004 e 0,004 indivíduos/m²/h (Figura 7; Tabela 9).

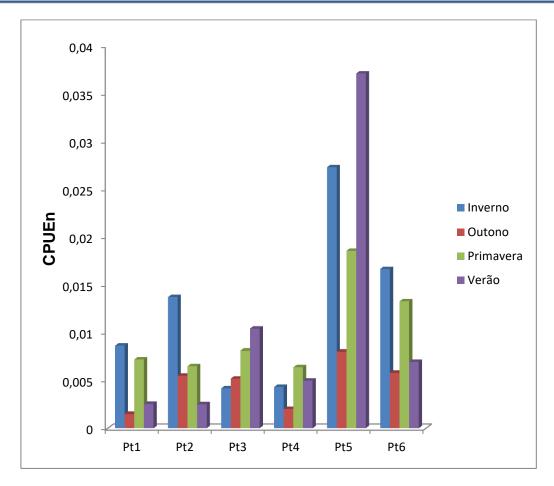


Figura 7. Captura por Unidade de Esforço com base no número de indivíduos (CPUEn) por ponto amostral – pós-enchimento do reservatório da UHE Monjolinho. Os valores representam as médias entre as estações em cada ponto.

Tabela 9. Valores mínimos, máximos e médios de CPUE por ponto amostral na pós-enchimento do reservatório da UHE Monjolinho.

Sítio	Mínimo	Máximo	Média
Ponto 1	0.000	0.0023	0.004
Ponto 2	0.000	0.017	0.006
Ponto 3	0.001	0.020	0.007
Ponto 4	0.0006	0.010	0.004
Ponto 5	0.0006	0.085	0.020
Ponto 6	0.0012	0.021	0.009

Tamanho corporal e estrutura trófica

√ Tamanho corporal

O número de espécies por classe de tamanho demonstra que a área sob influência da UHE Monjolinho é composta majoritariamente por espécies de pequeno porte

UHE MONJOLINHO

(CT=>25<50), com 41,8%, e médio porte (CT<25), com 41,8%, e minoritariamente por espécies de grande porte (CT=>50) (21,8%) (Tabela 10; Figura 8).

Tabela 10. Variação do comprimento total - CT (cm), porte, habitat e hábito alimentar das espécies

coletadas nos rios Passo Fundo e Erechim, na área de influência da UHE Monjolinho.

Espécies	CT	Porte	Habitat	Hábito alimentar					
Acestrorhynchus pantaneiro	20,0-35,0	Médio	Todos	Piscívora					
Ancistrus taunayi	10	Pequeno	Lótico	Detritívora					
Apareiodon affinis	12,0-14,0	Pequeno	Rios	Iliófaga					
Astyanax lacustris	10,0-15,0	Pequeno	Todos	Insetívora terrestre					
Astyanax sp. 1. (op)	10,0-13,0	Pequeno	Todos	Insetívora terrestre					
Astyanax sp. 2. (og)	10,0-13,0	Pequeno	Todos	Insetívora terrestre					
Astyanax sp. 3. (bl)	11,5-14,0	Pequeno	Todos	Insetívora terrestre					
Astyanax sp.4. (nv)	8,5-11,50	Pequeno	Rios	Insetivora terrestre					
Australoheros forquilha	11,50	Pequeno	Rios	Bentófaga					
Bryconamericus iheringii	9,5-10,0	Pequeno	Arroios	Insetívora aquática					
Bryconamericus patriciae	4,5-6,5	Pequeno	Rios	Insetívora aquática					
Crenicichla celidochilus	14,5-15,0	Médio	Rios e arroios	Insetívora aquática					
Creniciona condocimas	15,5-22,0	Médio	Rios e arroios	Insetívora aquática					
Creniciona jarasi Crenicichla minuano	10,5-15,5	Pequeno	Rios e arroios	Insetívora aquática					
Crenicichia minidano	13,5-35,0	Médio	Rios e arroios	Insetívora aquática					
Crenicicha tendybaguassu	17,5-22,0	Médio	Rios	Insetívora aquática					
Ctenopharyngodon idella	55,0	Grande	Rios e Lagos	Herbívora					
Cyphocharax voga	19,0-24,0	Médio	Rios e Lagos	Iliófaga					
Cyprinius carpio	60,0	Grande	Rios e Lagos	Onívora					
Eigenmannia trilineata	20,0-28,0	Pequeno	Todos	Insetívora aquática					
Eigenmannia virescens	21,0-24,5	Pequeno	Todos	Insetívora aquática					
Galeocharax humeralis	19,0-23,0	Médio	Rios	Piscívora					
Geophagus iporangensis	14,0-24,5	Médio	Rios e arroios	Bentófaga					
Gymnogeophagus sp.	8,0-9,5	Pequeno	Rios e arroios	Bentófaga					
Gymnotus inaequilabiatus	59,0	Grande	Rios e lagos	Insetívora aquática					
Hemiancistrus fuliginosus	9,0-19,0	Médio	Lóticos	Detritívora					
Hemiancistrus votouro	9,0-14,5	Médio	Lóticos	Detritívora					
Hoplias australis	27,5	Médio	Rios e lagos	Piscívora					
Hoplias lacerdae	20,0-56,0	Grande	Rios e lagos	Piscívora					
Hoplias malabaricus	30,0-38,0	Grande	Todos	Piscívora					
Hypostomus spiniger	17,5-29,0	Grande	Todos	Detritívora					
Hypostomus isbrueckeri	9,0-26,0	Médio	Lóticos	Detritívora					
Hypostomus luteus	18,0-31,0	Médio	Lóticos	Detritívora					
Hypostomus roseopunctatus	20,0	Médio	Lóticos	Detritívora					
Ihenringichthys labrosus	11,0-19,3	Médio	Rios	Bentófaga					
Ictalurus punctatus	3,6-32	Grande	Rios e lagos	Piscívora					
Leporinus amae	12,5-19,0	Pequeno	Rios	Onívora					
Megaleporinus obtusidens	39,0-45,0	Grande	Rios	Onívora					
Loricariichthys anus	15,0-38,0	Médio	Rios e lagos	Detritívora					
Odonthestes perugiae	17,0-24,0	Pequeno	Rios e lagos	Bentófaga					
Oligosarcus brevioris	17,0-22,0	Médio	Rios e lagos	Piscívora					
Oligosarcus jenynsii	17,0-19,0	Médio	Rios e lagos	Piscívora					
Oligosarcus oligolepis	18,5-33,0	Médio	Rios e lagos	Piscívora					
Pachyurus bonariensis	10,5-11,0	Pequeno	Rios e lagos	Bentófaga					
Paraloricaria vetula	17,0-24,0	Médio	Rios e lagos	Detritívora					
Pimelodella australis	12,5-16,0	Pequeno	Rios	Insetívora aquática					
Pimelodus absconditus	15,0	Pequeno	Rios	Insetívora aquática					

Espécies	СТ	Porte	Habitat	Hábito alimentar
Pimelodus atrobrunneus	14,0-24,0	Pequeno	Rios	Insetívora aquática
Pimelodus pintado	12,5-40,0	Médio	Rios e lagos	Insetívora aquática
Prochilodus lineatus	59,0-66,0	Grande	Rios	Iliófaga
Rhamdella longiuscula	12,5-15,0	Pequeno	Rios e arroios	Insetívora aquática
Rhamdia sp.	40,0	Grande	Todos	Insetívora aquática
Rineloricaria zaina	12,0-15,0	Pequeno	Rios e arroios	Detritívora
Salminus brasiliensis	64,0-75,5	Grande	Rios	Piscívora
Schizodon nasutus	17,5-34,0	Médio	Rios e lagos	Herbívora
Serrasalmus maculatus	12,0-27,0	Médio	Rios e lagos	Piscívora
Steindachneridion scriptum	57,0	Grande	Rios	Piscívora
Steindachenerina brevipinna	11,0-13,5	Pequeno	Rios	lliófaga

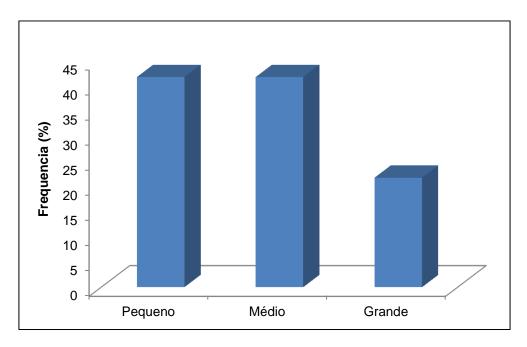


Figura 8. Frequência de espécies por tamanho corporal (porte), fase pós-enchimento do reservatório da UHE Monjolinho.

√ Estrutura trófica

A comunidade de peixes capturada na área de influência da UHE Monjolinho foi composta principalmente por espécies piscívoras (26%), onívoras (16%), insetívoras (16%) e detritívoras (16%). Em menores proporções, vieram as espécies herbívoras (12%), bentófagas (9%) e invertívoras (7%). Em termos de abundância relativa, os grupos tróficos que mais se sobressaíram foram os piscívoros (40%) e onívoros (25%), seguidos pelos herbívoros (13%), bentófagos (12%) e detritívoros (7%) (Figura 9).

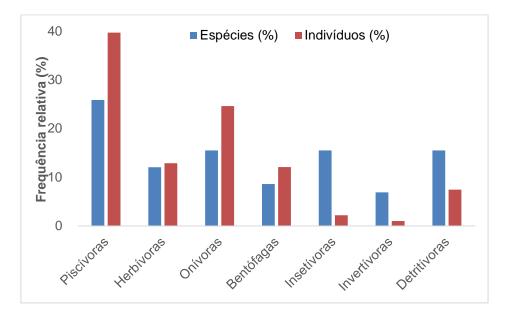


Figura 9. Frequência relativa de espécies e de indivíduos da ictiofauna por categoria trófica capturada nas campanhas de monitoramento da fase pós-enchimento do reservatório da UHE Monjolinho.

A ictiofauna da área de influência da UHE Monjolinho pode ser dividida entre dois tipos de ambientes: o lêntico e o lótico. Entretanto, apesar de esperar uma maior diferença de número de indivíduos entre as unidades amostrais, principalmente entre os pontos localizados em ambientes de água corrente, aparentemente, existe uma igualdade da frequência relativa entre todas as unidades amostrais, com maior predomínio de piscívoros em praticamente todas as unidades amostrais (Figura 10).

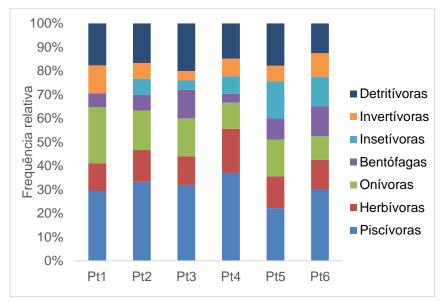


Figura 10. Frequência de espécies por ponto amostral da ictiofauna por categoria trófica – pósenchimento do reservatório da UHE Monjolinho.

UHE MONJOLINHO

Constância e similaridade

✓ Constância das espécies

Do total amostrado, apenas seis espécies foram classificadas como constantes, ocorrendo em mais de 50% das amostras: o cascudo - *H. isbrueckeri* (98%), a voga - *S. nasutus* (86%), peixe-cachorro - *A. pantaneiro* (80%), birú - *S. brevipinna* (60%), tambicú - *O. oligolepis* (58%) e o jundiá - *Rhamdia* sp. (53%). Treze espécies foram classificadas como acessórias, com frequências de ocorrência variando entre 25% e 50% das amostras: *Astyanax sp.* (OG), *L. anus*, *O. brevioris*, *A. lacustris*, *H. lacerdade*, *H. spiniger*, *Astyanax* sp. (OP), *O. yucuma*, *C. missioneira*, *G. iporangesis*, *H. malabaricus*, *H. luteus* e *L. amae* (Figura 11). As demais 39 espécies coletadas tiveram uma baixa frequência de ocorrência e, por isso, foram classificadas como acidentais.

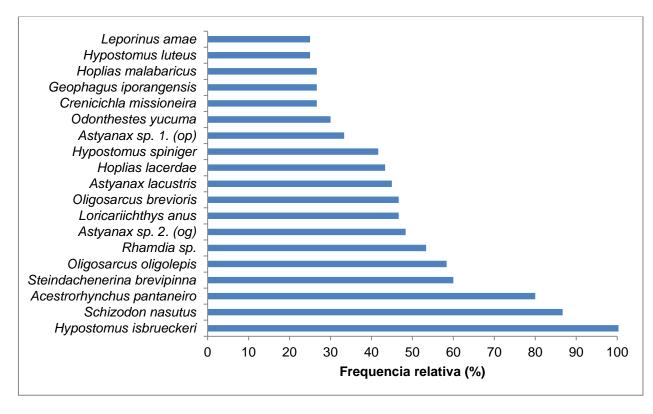


Figura 11. Espécies de peixes com maior frequência de captura durante as dezessete campanhas de monitoramento da ictiofauna na área de influência da UHE Monjolinho— pós-enchimento.

√ Índice de Similaridade

A partir da composição de espécies amostradas nos seis pontos de coleta foi realizada uma análise de agrupamento. Como resultado, foi possível evidenciar a

presença de grupos mais similares na composição de espécies como, por exemplo, os pontos 2 e 4 com uma similaridade aproximadamente de 70%. O ponto 3 apresentou uma similaridade de 58% com os pontos 2 e 4. O ponto 5 (jusante da barragem) apresentou uma similaridade de aproxidamente 56% com o ponto 6. O ponto 1, trecho de rio livre, apresentou uma composição de espécies mais distintas, indicando uma maior heterogeneidade na ictiofauna. Esse resultado indica que a composição de espécies da área alagada é espacialmente mais homogênea (Figura 12)

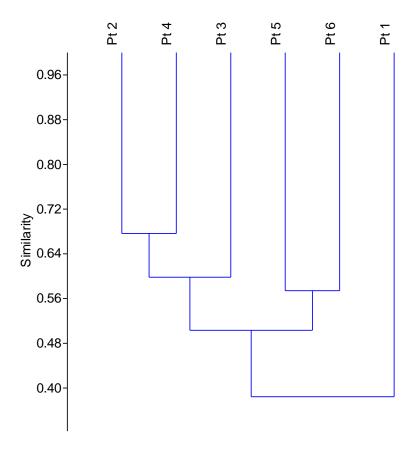


Figura 12. Agrupamento das seis unidades amostrais localizadas na área de influência da UHE Monjolinho, aplicados a similaridade de Bray-Curtis utilizando a matriz de presença e ausência de espécies.

Curva do coletor

Na 1ª campanha de monitoramento realizada no presente estudo, de agosto de 2012, fase pós-enchimento da UHE Monjolinho, haviam sido coletadas 37 espécies de peixes. Até a 8ª campanha, de março de 2016, foram acumuladas 54 espécies de

peixes. Esse número se manteve inalterado até 10^a campanha de monitoramento, posteriormente ocorreu o registro de um indivíduo de *Ictalurus punctatus*, espécie exótica que não havia sido registrada nos monitoramentos anteriores. Houve um novo registro de um indivíduo da espécie *Hemiancistrus votouro*, chegando ao registro de 56 espécies de peixes acumulados. Na campanha de Novembreo de 2019 houve um registro de *Ancistrus taunay* e *Pimelodus absconditus* que não haviam sido mais registrado após a formação do reservatório, totalizando 58 espécies coletadas (Figura 13). Nas últimas três campanhas não ocorreram registros novos.

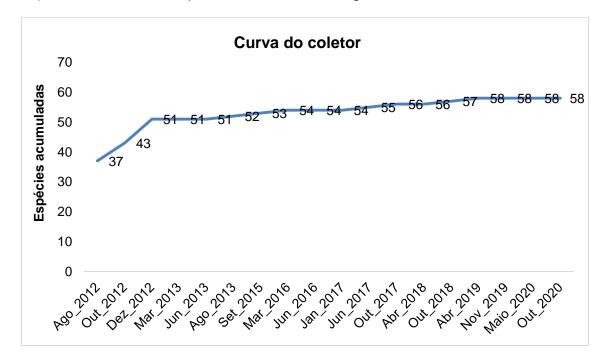


Figura 13. Curva do coletor representando os valores cumulativos das espécies registradas nas dezoito campanhas de monitoramento da fase pós-enchimento referidas no presente relatório, área de influência da UHE Monjolinho, Nonoai, RS.

Proporção sexual e período reprodutivo das espécies

✓ Proporção sexual

Ao total, ao longo das dezoito campanhas, foram analisadas as características reprodutivas de 1500 indivíduos pertencentes a onze espécies (Tabela 11). Apesar da variação entre estações, a maioria das espécies teve uma proporção equivalente no número de indivíduos machos e fêmeas quando analisado o número total. A análise do qui-quadrado indicou que apenas três espécies diferiram da proporção sexual 1:1 esperada. Essas espécies foram *S. brevipinna* e *A. affinis* tiveram um maior número de fêmeas enquanto *H. isbrueckeri* teve um maior número de machos (Tabela 12). Essas

LINE MONIOUNIO

diferenças estão associadas ao comportamento, natalidade ou mortalidade distinto entre gênero das espécies analisadas.

UHE MONJOLINHO

Tabela 11. Número absoluto de machos e fêmeas das espécies que foram analisadas sua biologia reprodutiva nas capturas das dezoito campanhas de monitoramento realizadas na área de influência da UHE Monjolinho. M = machos, F = fêmeas.

Espécie		v. 12	P 20	ri. 12		er. 12		er.)13	_	ut. 113		ıv. 013		ri. 15		er. 16	Ot 20	ut. 16	V ₀	er. 17	_	ut.)17		ri. 17	Ot 20	ut. 18		ri.)18	_	ut.)19	Pi 20		Ot 20			ri.)20
	М	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F
Astyanax sp.2 (og)	1		8	6	21	2	7	3	1	1	4	6	4		5	4	1		7	3	4	0	2	1			12	18			1	3	2	2	3	11
Acestrorhynchus pantaneiro	6	7	2	18	30	26	5	11	1	1	3	6	22	12	41	21	1				5	8	6	4	5	9	8	4	1	4	3	8	3	5	23	10
Steindachnerina brevipinna	3	2	12	7	10	15		1	1	1	6	10		4	14	13	4	3					3	7	3	2		2		2	5	12	2	2	9	20
Astyanax sp.1 (op)				4	14	8	8	9	1	3		2	1					1							1		2	3					2		10	3
Hypostomus isbruckeri	19	8	9	11	4	3	1	1	2		6	9	20	5	3	4	4	3					5	10	5	7	4	5	4	9	3	3	13	2	13	6
Schizodon nasutus	9	3	4	9	10	5	2	2	1		4	27	14	19	1	1			11	1	3	8	3	7	10	14	7	5	6	4	4	5	11	2	15	1
Astyanax sp.3 (bl)	1		4	1			3	6	8	12									6	3															2	
Leporinus amae	12	22		1		1	1	1	2		5	4	2	4										3		2							4	1		2
Astyanax lacustris	1			4	14	5		3	1			1	4	6	1		2				1	5			5	4	1		6	6	0	2			5	3
Oligosarcus oligolepis	10	2		4			1	1	1		6	5									6	31	8	12	1	4	5	3	8	10	5	3		1	6	2
Apareiodon affinis																			0	11						1		1							1	8

Tabela 12. Proporção sexual de fêmeas e machos das espécies que apresentaram a maior frequência e abundância de captura na área de influência da UHE Monjolinho. *Gênero que apresentou maior número.

Espécies	Machos	Fêmeas	χ² teste
Astyanax sp.2	83	60	$\chi^2 = 3,69$; p = 0,05
Acestrorhynchus pantaneiro	166*	148	$\chi^2 = 1.03$; p = 0.30
Steindachnerina brevipinna	72	103	$\chi^2 = 5,49$, p = 0,01
Astyanax sp. 1	39	33	$\chi^2 = 0.5$, p = 0.47
Hypostomus isbrueckeri	115*	86	$\chi^2 = 4.18$; p = 0.04
Schizodon nasutus	115	113*	$\chi^2 = 0.07$; p = 0.89
Astyanax sp. 3	24	22	$\chi^2 = 0.08$, p = 0.76
Leporinus amae	26	41	$\chi^2 = 3.5$, p = 0.06
Astyanax lacustris	41	39	$\chi^2 = 0.05$; p = 0.82
Oligosarcus oligolepis	57	78	$\chi^2 = 3,26 \text{ p} = 0,07$
Apareiodon affinis	1	21	$\chi^2 = 18,18 \text{ p} < 0,0001$

✓ Período reprodutivo das espécies

O ciclo reprodutivo de *Astyanax* sp. 2 (og), na área sob influência da UHE Monjolinho, ocorreu na primavera e verão das estações analisadas, quando verificouse um pico na ocorrência de fêmeas com gônadas maduras, aptas a reproduzir (Figura 14).

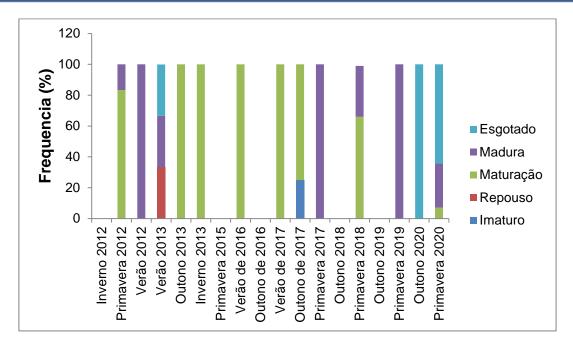


Figura 14. Frequência do estágio gonadal de fêmeas de *Astyanax* sp. 2 (og), área de influência da UHE Monjolinho, RS – pós-enchimento.

Conforme Meurer & Zaniboni-Filho (2012) o ciclo reprodutivo de *A. pantaneiro* é longo e se estende por todo o ano; porém, um pico reprodutivo ocorre entre o início da primavera e o verão. De fato, os resultados mostram que a maturação gonadal foi concentrada na primavera e a desova ocorreu no verão, com algumas fêmeas já no estágio esgotado no verão (Figura 15).

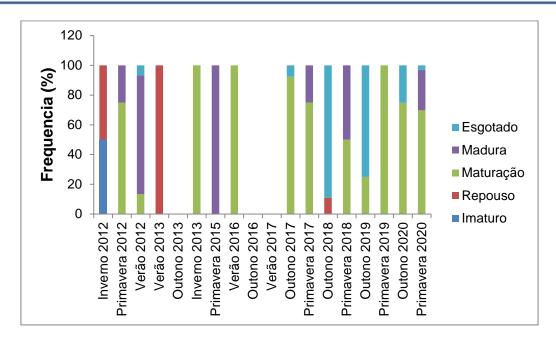


Figura 15. Frequência do estágio gonadal de fêmeas de *Acestrorhynchus pantaneiro*, área de influência da UHE Monjolinho, RS – pós-enchimento.

A análise das gônadas das fêmeas revelou que o ciclo reprodutivo desta espécie é longo, se estendendo praticamente por todos os meses de primavera e verão. Esse resultado revela um caráter mais generalista, que possibilita maior sucesso reprodutivo no reservatório, explicando a elevada abundância. Na penúltima campanha todos os exemplares estavam em maturação ou esgotados e nesta última campanha foram capturados indivíduos em maturação, maduros ou esgotados (Figura 16).

THE Management of the second o

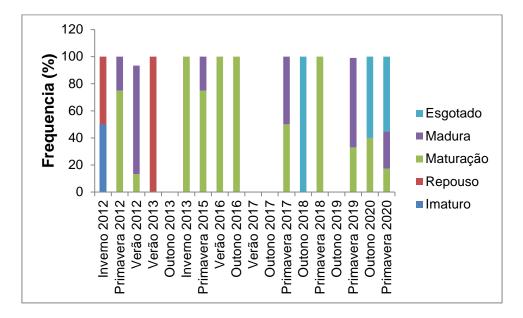


Figura 16. Frequência do estágio gonadal de fêmeas de *Steindachnerina brevipinna*, área de influência da UHE Monjolinho, RS – pós-enchimento.

A presença de um grande número de fêmeas em maturação inicial no inverno revela o início do processo reprodutivo de *Astyanax* sp.1 (op). Isso indica um período reprodutivo longo. Na primavera e no verão, contudo, se observou fêmeas maduras e esgotadas, mostrando o pico reprodutivo e a desova (Figura 17).

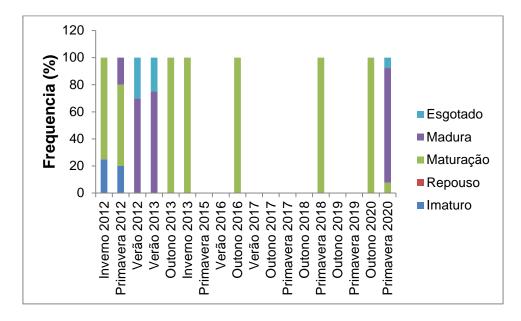


Figura 17. Frequência do estágio gonadal de fêmeas de *Astyanax* sp. 1 (op), área de influência da UHE Monjolinho, RS – pós-enchimento.

Os dados indicam que fase de maturação de H. isbrueckeri inicia-se no inverno, com algumas fêmeas na fase de maturação inicial, e termina no verão, com maior proporção de fêmeas desovadas. Na última campanha a maiorias das fêmeas coletadas estavam maduras ou esgotadas, entretanto, uma pequena porção em maturação. Esses resultados indicam que a reprodução ocorre entre a primaveraverão (Figura 18).

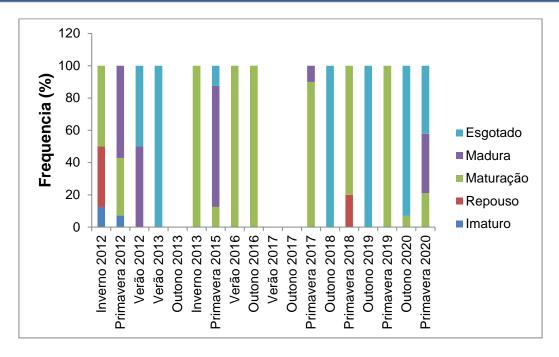
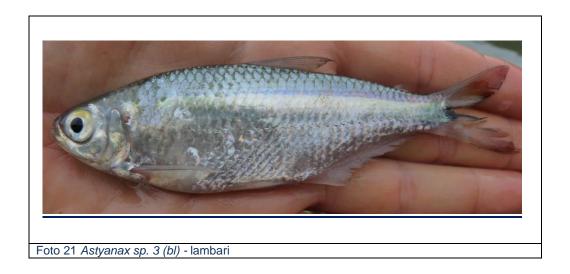



Figura 18. Frequência do estágio gonadal de fêmeas de *Hypostomus isbrueckeri*, área de influência da UHE Monjolinho, RS – pós-enchimento.

A maioria das fêmeas capturadas na primavera e no verão estiveram com as gônadas maduras, aptas a reproduzir. Além disso, em duas ocasiões no verão (2013 e 2017) registraram-se fêmeas com gônadas esgotadas, sugerindo o pico de reprodução ocorrendo no verão (Figura 19).

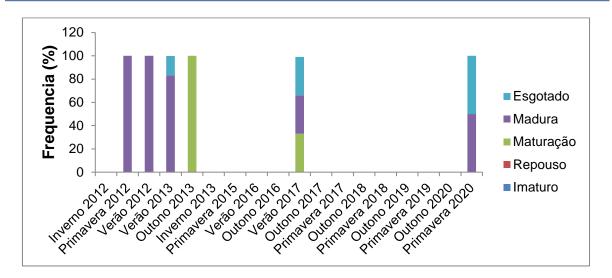


Figura 19. Frequência do estágio gonadal de fêmeas de *Astyanax* sp. 3 (bl), área de influência da UHE Monjolinho, RS – pós-enchimento.

A presença de uma maior proporção de fêmeas em maturação inicial no inverno revela o início do processo reprodutivo em *A. lacustris*, um padrão que tem se mantido nos Characiformes analisados na área de influência da UHE Monjolinho. Da mesma forma, os dados mostram a reprodução ocorrendo na primavera e no verão (Figura 20).

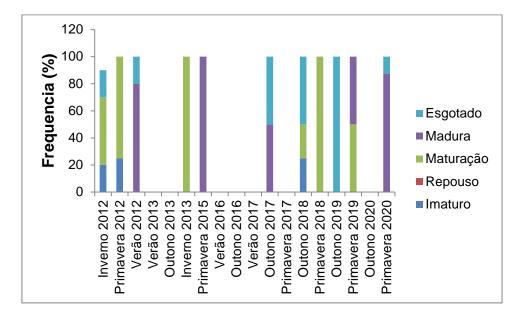
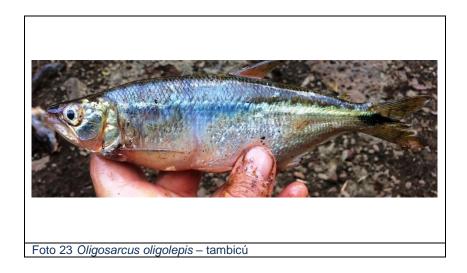



Figura 20. Frequência do estágio gonadal de fêmeas de *Astyanax lacustris*, área de influência da UHE Monjolinho, RS – pós-enchimento.

Estudos prévios indicam que espécies do gênero *Oligosarcus* reproduzem principalmente no inverno. De fato, a partir das fêmeas analisadas, os resultados obtidos aqui indicam que o pico reprodutivo de *O. oligolepis* ocorre no inverno e se estende até a primavera. Essa estratégia seria favorável a espécies piscívoras, como as do gênero *Oligosarcus*, pois permite que as larvas estejam num tamanho adequado para forragear larvas de espécies que se reproduzem no verão. Interessante destacar que a captura dessa espécie foi esporádica, não ocorrendo em todos os monitoramentos, mas quando ocorreu foi em elevada abundância (Figura 21). No

UHE MONJOLINHO

último monitoramento a maioria dos indivíduos estavam com as gônadas em maturação.

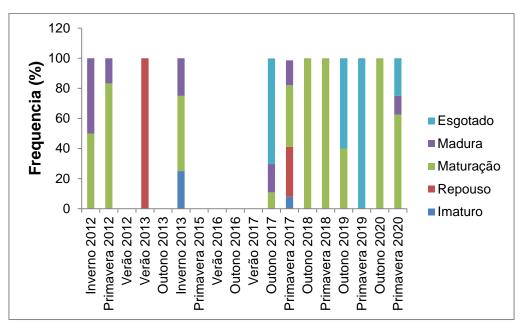



Figura 21. Frequência do estágio gonadal de fêmeas de *Oligosarcus oligolepis*, área de influência da UHE Monjolinho, RS – pós-enchimento.

✓ Reprodução das espécies migradoras

Três espécies migradoras foram coletadas em abundância suficiente para realizar análises reprodutivas: *L. amae* (perna-de-moça), *S. nasutus* (voga) e *S. brasiliensis* (dourado). A seguir, são apresentados dados dessas espécies.

A maturação gonadal de *L. amae* iniciou no inverno e o período reprodutivo ocorreu na primavera e no verão dos anos em que houve a captura da espécie.

Aparentemente, portanto, o período reprodutivo da espécie é longo entre primavera e verão (Figura 22).

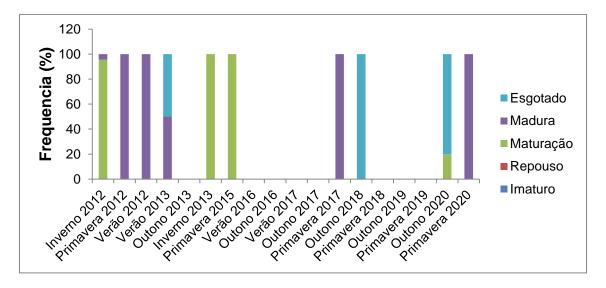
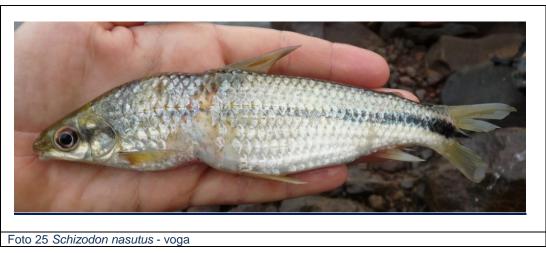



Figura 22. Frequência do estágio gonadal de *Leporinus amae*, área de influência da UHE Monjolinho, RS – pós-enchimento.

O *S. nasutus* apresentou seu pico reprodutivo na primavera e verão nas 16 campanhas realizadas, indicado pela maior proporção de fêmeas maduras nestas estações. No inverno, as fêmeas estiveram em fase de maturação inicial ou em repouso, indicando um novo ciclo reprodutivo para a espécie. Na última campanha a maioria dos indivíduos estava em estágio de maturação e madura. Apesar da literatura indicar comportamento migratório para esta espécie, aparentemente, ela está tendo sucesso reprodutivo em manter populações na UHE estudada (Figura 23).

LIHE MONIQUINHO

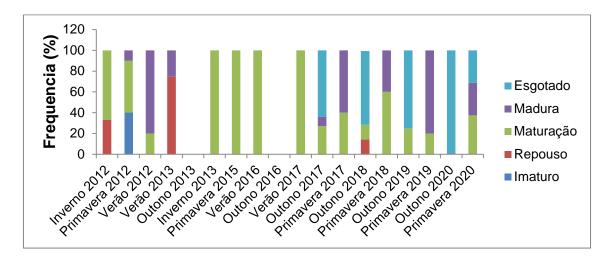


Figura 23. Frequência do estágio gonadal de *Schizodon nasutus*, área de influência da UHE Monjolinho, RS – pós-enchimento.

Nas três primeiras campanhas de monitoramento do presente relatório foram capturados 14 exemplares de *S. brasiliensis* a jusante do barramento (ponto 5): 5 machos e 9 fêmeas. Com exceção de uma fêmea madura capturada no verão de 2012, todas as fêmeas, adultas, estavam em fase de maturação. A partir de 2013, não houveram mais capturas de dourado. Entretanto, na primavera 2018 e outono 2019 foram capturados dois indivíduos machos desta espécie, estes peixes encontravam-se em estágio de maturação (Figura 24).

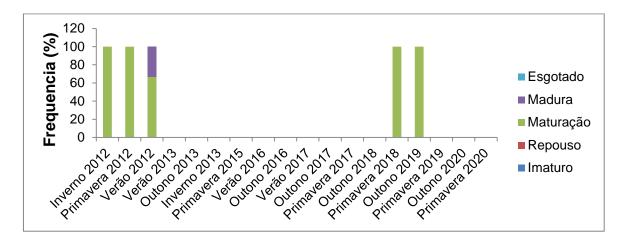


Figura 24. Frequência do estágio gonadal de *Salminus brasiliensis*, área de influência da UHE Monjolinho, RS – pós-enchimento.

Espécies Migradoras

Tabela 13. Lista das espécies migradoras coletadas nas campanhas pós-enchimento descritas no presente relatório nos rios Passo Fundo e Erechim, área de influência da UHE Monjolinho. *poucos estudos mencionam a espécie como migradora.

Espécie	Nome comum	Categoria
Pimelodus maculatus	Pintado	Migradora
Leporinus obtusidens	Piava	Migradora
*Leporinus amae	Perna-de-moça	Migradora
Steindachneridion scriptum	Suruvi	Migradora
Salminus brasiliensis	Dourado	Migradora
*Schizodon nasutus	Voga	Migradora
Prochilodus lineatus	Grumatã	Migradora

Até o momento sete espécies (o comportamento migratório de *S. nasutus* e *L. amae* deveriam ser mais estudados porque não existem evidências recentes que estas duas espécies são migratórias de longa distância) consideradas migradoras de longa distância foram coletadas durante o período de pós-enchimento do reservatório da UHE Monjolinho (Tabela 13): *Schizodon nasutus* (voga), *Salminus brasiliensis* (dourado), *Steindacneridion scriptum* (suruvi), *Leporinus obtusidens* (piava), *Leporinus amae* (perna-de-moça), *Pimelodus maculatus* (pintado) e *Prochilodus lineatus*

(grumatã). O número de exemplares registrado e os respectivos pontos de amostragem estão relacionados a seguir:

- Schizodon nasutus: 179 indivíduos capturados nos pontos a montante e 64 indivíduos capturados nos pontos a jusante do barramento;
- Salminus brasiliensis: 16 indivíduos capturados a jusante, no ponto 5;
- Prochilodus lineatus: 11 indivíduos amostrados a jusante, no ponto 5;
- > Pimelodus maculatus: 11 indivíduos a jusante e 2 a montante do barramento:
- > Leporinus obtusidens: 1 indivíduo a jusante e 1 a montante do barramento;
- Leporinus amae: 74 indivíduos a montante do barramento;
- > Steindachneridion scriptum: 1 indivíduo a montante do barramento.

Até os monitoramentos realizados aqui, não havia registros concretos prévios da ocorrência de S. scriptum no rio Passo Fundo e seus afluentes. Buckup et al., 2007 relata a deficiência de dados desta espécie no Estado do Rio Grande do Sul. Na revisão do gênero, realizada por Júlio Cesar Garavello (Garavello, 2005), nenhum exemplar foi citado para o rio Passo Fundo e seus afluentes. Assim como o S. scriptum não havia registros de L. obtusidens no rio Passo Fundo e seus afluentes.

Espécies exóticas

Três espécies exóticas foram capturadas durante as dezoito campanhas de pósenchimento dentro do reservatório da UHE Monjolinho: Ctenopharingodon idella (carpa-comum), Cyprinius carpio (carpa-húngura) e Ictalurus punctatus (bagreamericano). Dois indivíduos de C. idella, dois indivíduos de C. carpio e um indivíduo de I. punctatus, todos capturados a montante do barramento. Essas espécies provavelmente foram introduzidas com o desenvolvimento da piscicultura na região, ou são oriundas de escape de tanques de criação próximos aos rios e riachos da subbacia.

Espécies endêmicas e/ou ameaçadas de extinção

Em campanhas anteriores, principalmente na fase pré-enchimento, foi documentada a espécie Hemiancistrus votouro Cardoso & Silva, 2004, que é endêmica da sub-bacia do rio Passo Fundo (bacia onde se localiza a UHE Monjolinho). De acordo com Cardoso & Silva (2004), H. votouro é usualmente coletada em trechos de rio livre com 2-5 m de largura, substrato rochoso e arenoso, contendo

UHE MONJOLINHO

corredeiras intercaladas por remansos e vegetação marginal preservada. Esse tipo de ambiente foi alterado com a formação do reservatório. Esta espécie não havia sido mais documentada nas onze campanhas de monitoramento. Entretanto, nas últimas campanhas foi registrado quatorze exemplares de *H. votouro* (Foto 28) no rio Erechim a montante do reservatório em trecho de rio livre (Ponto 1).

As espécies capturadas e mencionadas com o epíteto "sp." representam espécies ainda não descritas, que estão em processo de descrição e/ou em análise taxonômica e, portanto, suas ocorrências nas principais bacias hidrográficas do Estado ainda permanecem indefinidas.

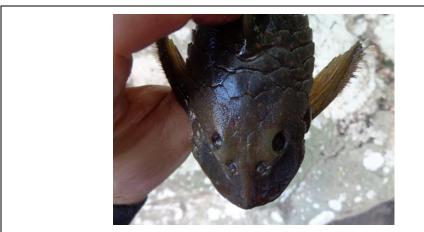


Foto 27 Hemiancistrus votouro - cascudo

Duas espécies capturadas na área de influência da UHE Monjolinho estão na lista da fauna ameaçada de extinção do Estado do Rio Grande do Sul, conforme o decreto nº 51.797, de setembro de 2014 (http://www.al.rs.gov.br/filerepository/repLegis/arquivos/DEC%2051.797.pdf): *Salminus brasiliensis* (dourado), considerada vulnerável na lista, e *Steindachneridion scriptum* (suruvi), considerada criticamente em perigo. *Steindachneridion scriptum* é também listada como em perigo (EN) na lista brasileira da fauna ameaçada de extinção (Instituto Chico Mendes – MMA - www.icmbio.gov.br, Portaria MMA nº 445, de 17 de dezembro de 2014).

2.4.2 Ictioplâncton

Na presente campanha, outubro de 2020, não foram registrados de ovos e larvas. Nas últimas dez campanhas nenhuma larva foi capturada, tanto de espécie migradora quanto não migradora, apesar dos registros de espécies migradoras dentro do

LUIE Management

reservatório: Schizodon nasutus (voga), Steindacneridion scriptum (suruvi), Leporinus obtusidens (piava) e Pimelodus maculatus (pintado).

Nas três primeiras campanhas houve capturas de duas larvas de Odontesthes perugiae - peixe rei (Odontesthes perugiae = atualizada taxonomicamente para Odonthesthes yucuman), uma no ponto 2, a montante do barramento e a outra no ponto 1 a jusante. Na campanha de outono de 2019 foi coletado um ovo no ponto 2, rio Erechim indicando atividade reprodutiva neste ponto. Entretanto, a ausência na maioria das coletas de ovos e larvas de peixes migradores é um indicativo de que os peixes migradores de longa distância não desovam na área de influência da UHE Monjolinho.

Foto 29 Procedimentos para coleta de ictioplâncton - ponto 6, montante da barragem UHE Monjolinho

3. CONCLUSÕES

O somatório das dezoito campanhas sazonais de monitoramento da ictiofauna na fase pós-enchimento da UHE Monjolinho resultou num total de 58 espécies de peixes, distribuídas em 18 famílias e sete ordens.

As ordens que mais se destacaram em número de espécies ao longo deste período amostral foram os Characiformes (por exemplo: lambaris, traíras, dourado, grumatã), com 24 spp. (41%), e os Siluriformes (por exemplo: bagres, cascudos), com 19 spp. (28%), seguidos da ordem Cichliformes (por exemplo: joanas, carás), com oito espécies (14,2%). As famílias de Characiformes que mais se destacaram nos

UHE MONJOLINHO

monitoramentos em número de espécies foram Characidae (13 spp.), Erythrinidae (3 spp.), Anostomidae (3 spp.) e Curimatidae (2 spp.). Entre os Siluriformes, se destacaram as famílias Loricariidae (10 spp.), Pimelodidae (5 spp.) e Heptapteridae (3 spp.). Entre os Cichliformes, a família Cichlidae foi a mais especiosa (8 spp.), enquanto que entre os Gymnotiformes foi a família Sternopygidae (2 spp.). Os Cypriniformes foram representados pela família das carpas, Cyprinidae (2 spp.). Atherinopsidae (1 sp.) foi a única família representante de Atheriniformes.

Especificamente em relação a presente campanha, de outubro de 2020, foram capturados 282 indivíduos, pertencentes a 30 espécies, 13 famílias e cinco ordens. Semelhante ao padrão geral, houve dominância das ordens Characiformes e Siluriformes, com 14 e 9 spp., respectivamente. Em relação às famílias, Loricaridae e Characidae foram as mais representativas, 6 spp e 6 spp., respectivamente.

A riqueza média dos pontos amostrados foi de 6,90 espécies. Porém, houve grande variação deste valor, entre zero e 27 espécies. O ponto 5, a jusante da barragem, exibiu a maior média de espécies, com 11,44 spp. Por outro lado, o ponto 1, o mais a montante do barramento, apresentou a menor média, com apenas 4,27 spp.

Em média, para todos os pontos, a CPUE foi de 0,008 indivíduos/m²/h. Separadamente, a CPUE evidenciou que densidade de indivíduos variou bastante entre os pontos de coleta durante as estações do ano. O ponto 5 apresentou, geralmente, a maior densidade de indivíduos, com uma média de CPUE 0,020 indivíduos/m²/h. As menores capturas foram no ponto 1 e 4, em média 0,004 e 0,004 indivíduos/m²/h.

O número de espécies por classe de tamanho demonstra que a área sob influência da UHE Monjolinho é composta majoritariamente por espécies de pequeno porte (CT=>25<50), com 41,8%, e médio porte (CT<25), com 41,8%, e minoritariamente por espécies de grande porte (CT=>50) (21,8%).

A comunidade de peixes capturada na área de influência da UHE Monjolinho foi composta principalmente por espécies piscívoras (26%), onívoras (16%), insetívoras (16%) e detritívoras (16%). Em menores proporções, vieram as espécies herbívoras (12%), bentófagas (9%) e invertívoras (7%).

Do total amostrado, apenas seis espécies foram classificadas como constantes, ocorrendo em mais de 50% das amostras: o cascudo - *H. isbrueckeri* (98%), a voga - *S. nasutus* (86%), peixe-cachorro - *A. pantaneiro* (80%), birú - *S. brevipinna* (60%), tambicú - *O. oligolepis* (58%) e o jundiá - *Rhamdia* sp. (53%). Treze espécies foram classificadas como acessórias, com frequências de ocorrência variando entre 25% e 50% das amostras: *Astyanax sp.* (OG), *L. anus*, *O. brevioris*, *A. lacustris*, *H. lacerdade*, *H. spiniger*, *Astyanax* sp. (OP), *O. yucuma*, *C. missioneira*, *G. iporangesis*, *H. malabaricus*, *H. luteus* e *L. amae*.

Como resultado, foi possível evidenciar a presença de grupos mais similares na composição de espécies como, por exemplo, os pontos 2 e 4 com uma similaridade aproximadamente de 70%. O ponto 3 apresentou uma similaridade de 58% com os pontos 2 e 4. O ponto 5 (jusante da barragem) apresentou uma similaridade de aproxidamente 56% com o ponto 6. O ponto 1, trecho de rio livre, apresentou uma composição de espécies mais distintas, indicando uma maior heterogeneidade na ictiofauna.

Até a 10^a campanha, verão de 2017, foram acumuladas 54 espécies de peixes. Entretanto, o registro de *Ictalurus punctatus* (11^a campanha) e *Hemiancistrus votouro* (12^a e 13^a campanha) aumentou para 56 espécies de peixes registradas na sub-bacia do rio Passo Fundo após a formação do reservatório. Houve o registro de *Ancistrus taunayi* e *Pimelodus absconditus*, portanto a curva do coletor aumentou para 58 espécies. Nesta campanha não houve registros de novas espécies.

Cinco espécies consideradas migradoras de longa distância foram coletadas durante as campanhas do período de pós-enchimento do reservatório da UHE Monjolinho: Salminus brasiliensis (dourado), Steindacneridion scriptum (suruvi), Leporinus obtusidens (piava), Pimelodus maculatus (pintado-amarelo) e Prochilodus lineatus (grumatã). Dentre estas espécies, S. scriptum e L. obtusidens são consideradas novos registros para a sub-bacia do rio Passo Fundo.

Três espécies exóticas foram capturadas durante o período de pós-enchimento dentro do reservatório da UHE Monjolinho: *Ctenopharingodon idella* (carpa-comum), *Cyprinius carpio* (carpa-húngura) e *Ictalurus punctatus* (bagre-americano).

A captura de *Hemiancistrus votouro* no rio Erechim (ponto 1) indica que esta área de rio livre pode ser um possível refúgio para esta espécie de cascudo a qual nunca mais tinha sido registrada posteriormene a formação do reservatório UHE Monjolinho.

LUIE Manner une

Duas espécies capturadas na área de influência da UHE Monjolinho estão listadas como ameaçadas: *Salminus brasiliensis* (dourado) e *Steindachneridion scriptum* (suruvi).

Na última campanha não foram registrados ovos e larvas em nenhum ponto de monitoramento.

4. TOMBAMENTO DO MATERIAL

Exemplares de interesse ictiológico foram tombados na Coleção Científica do Laboratório de Ictiologia da Universidade Federal do Rio Grande do Sul. Os respectivos números de registro são citados a seguir: 24251, 24252, 24253, 24254, 24255, 24256, 24257, 24258, 24259, 24260, 24261, 24262, 24263, 24264.

Biól. Msc. Lucas de Fries CRBio 58586/RS

Sur C. C. de Vines

LIHE MONIOLINHO

5. BIBLIOGRAFIA

- AGOSTINHO, A. A., JÚLIO JR, H. F. & BORGHETTI, J. R. (1992). Considerações sobre os impactos dos represamentos na ictiofauna e medidas para sua atenuação. Um estudo de caso: reservatório de Itaipu. Revista Unimar, 14: 89:107.
- AGOSTINHO, A.A. & GOMES, L. C. 1997. Reservatório de Segredo: bases ecológicas para o manejo. Maringá, EDUEM.
- AGOSTINHO, A. A., MIRANDA, L. E., BINI, L. M., GOMES, L. C., THOMAZ S. M. & SUZUKI, H.I. 2003. Pp: 19-48. In: **Migratory fishes of South America: biology, fisheries and conservation status**. Ottawa, World Fisheries Trust Bank/IDRC, Canadá, 380p.
- AGOSTINHO, K. D. G. DA LUZ, LATINI, J. D., ABUJANRA, F., GOMES, L. C. & AGOSTINHO, A. A., (2010), **A** ictiofauna do rio das **Antas:** distribuição e bionomia das espécies. Maringá, Clichetec, 115 pp.
- BERTACO, V., FERRER, J., CARVALHO, F. R. & MALABARBA, L.R. 2016. Inventory of the freshwater fishes from a densely collected area in South America a case study of the current knowledge of Neotropical fish diversity. Zootaxa, 4138(3): 401-440.
- BUCKUP, P. A., Menezes, N. A., Ghazzi, M. S., (2007). Catálogo das espécies de peixes de água doce do Brasil. Rio de Janeiro, Museu Nacional. 195pp.
- CÂMARA L. F. & HAHN, L., (2002). The fish fauna of two tributaries of the Rio Passo Fundo, Uruguay River drainage, Rio Grande do Sul, Brazil. Comunicações do Museu de Ciências e Tecnologia da PUCRS, série Zoologia, 15(2): 163-174.
- CARDOSO, A. R. & DA SILVA, J. F. P. 2004. Two new species of the genus *Hemiancistrus* Bleeker (Teleostei: Siluriformes: Loricariidae) from the upper rioUruguai Basin. Neotrop. Ichthyol. 2(1):1-8.
- DAJOZ, R., (1983). **Ecologia geral.** 4^a ed. Petrópolis, Vozes. 472pp.
- DE FRIES, L.C.C. 2013. Movimento e distribuição longitudinal de um peixe migrador (*Salminus brasiliensis*) em reservatório de usina hidrelétrica. Dissertação de mestrado. Universidade Federal do Rio Grande do Sul, Porto Alegre, RS. 61p.
- ESCHMEYER, W. N., FRICKE, R. & VAN DER LAAN R. 2017 Catalog of fishes: genera, speceis, references. Disponível em http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.as (Acessado em janeiro de 2017).
- FERRARIS, C. J., Jr., (2007). Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalogue of siluriform primary types. Zootaxa, 1418: 1-628.
- GARAVELLO, J. C., (2005). **Revision of genus** *Steindachneridion*. Neotropical Ichthyology, 3(4): 607-623.

- HAHN, N. S., FUGI, R., ALMEIDA, V. L. L., RUSSO, M. R. & LOUREIRO, V. E., (1997). Dieta alimentar de peixes do reservatório de Segredo. *In:* Agostinho, A. A. & L. C. Gomes. Reservatório de Segredo: bases ecológicas para o manejo. Maringá: Eduem. 390p. Pp: 141-162.
- MALABARBA, L. R., NETO, P.C., BERTACO, V., CARVALHO, T.P., FERRER. J. & ARTIOLI, L.G.S. (2013). Guia de identificação dos peixes da bacia do rio Tramandaí. Porto Alegre: Ed. Via Sapiens. 140p.
- MENEZES, N. A., (1996). **Methods for assessing fresh water fish diversity.** Pp. 289-295. In: Bicudo, C. E. M. & Menezes, N. A. (Eds.). Biodiversity in Brazil: a first approach. São Paulo, CNPq.
- MEURER, S. & ZANIBONI-FILHO, E., (2012). Reproductive and feeding biology of *Acestrorhynchus pantaneiro* Menezes, 1992 (Osteichthyes: Acestrorhynchidae) in areas under theinfluence of dams in the upper Uruguay River, Brazil. Neotrop. Ichthyol. 10(1):159-166.
- MIRANDA, J. C. (2012). Ameaças aos peixes de riachos da Mata Atlântica. Natureza On Line, 10:136-139.
- PERIOTTO, N. A., & TUNDISI, J. G. (2013). Ecosystem Services of UHE Carlos Botelho (Lobo/Broa): a new approach for management and planning of dams multiple-uses. Brazilian Journal of Biology, 73:471-482.
- PETRERE, M. 1985. Migraciones de peces de agua Dulce em America Latina: algunos comentários. Comisión de Pesca Continental para América Latina (COPESCAL), Roma, 1-17p.
- POMPEU, P. S., NOGUEIRA, L. B., GODINHO, H. P. & MARTINEZ, C. B. 2011. **Downstream passage of fish larvae and eggs through a small –sized reservoir, Mucuri river, Brazil**. Zoologia 28(6): 739-746.
- REIS, R. E., Kullander, S. O. & Ferraris, C. J., (2003). Check list of the freshwater fishes of South and Central America. Porto Alegre, Edipucrs. 729 pp.
- SCHAEFER, S.A. 1998. Conflict and resolution: Impact of new taxa on phylogenetic studies of the neotropical cascudinhos Siluriformes: Loricariidae. Pp. 375-400. In: Malabarba, L.R., R.E. Reis, R.P. Vari, Z.M.S. Lucena & C.A.S. Lucena(Eds.). Phylogeny and classification of Neotropical Fishes. Porto Alegre, Edipucrs. 603p.
- TUNDISI, J. G., MATSUMURA-TUNDISI, T., & TUNDISI, J. E. M. (2008). Reservoirs and human well being: new challenges for evaluating impacts and benefits in the neotropics. Brazilian Journal of Biology, 68: 1133-1135.
- VAZZOLER, A. E. A., (1996). **Biologia da reprodução de peixes teleósteos: teoria e prática.** Maringá/São Paulo, EDUEM/SBI. 169pp.

Tabela 14. Espécies coletadas nos rios Passo Fundo e Erechim, área de influência da UHE Monjolinho— Pós-enchimento. *Nome atualizado.

Tabela 14. Especies coletadas no	1100			12 (agos		, aroa)12 (out		110 1				(dezem		Luuo.		Ve	erão 201	3 (mar	ço)	
Espécies	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
01. Acestrorhynchus pantaneiro		2		11	2	3		1		1		22		2	30	25	1	14			9		7	1
02. Apareiodon affinis											4						11							
03. Astyanax lacustris*				1	11						8				1	1	23						3	
04. Astyanax sp. 1. (op)					19						4		2			2	30	2	1				26	
05. Astyanax sp. 2. (og)	1				6						40		1			1	82				1		9	
06. Astyanax sp. 3. (bl)		1									9						6						9	
07. Astyanax sp. 4. (nv)																	8							
08. Australoheros forquilha						1																		
09. Bryconamericus iheringii					1						6						6							
10. Bryconamericus patriciae						4																		
11. Crenicichla celidochilus		3									2						1	1						
12. Crenicichla jurubi																	1	1						
13. Crenicichla minuano		1											1	1			6	2						
14. Crenicichla missioneira		1															4	2						
15. Crenicichla tendybaguassu												2						2						
16. Ctenopharingodon idella		1								1														
17. Cyphocharax voga																								
18. Cyprinius carpio			1																					
19. Eigenmannia trilineata																	4							
20. Eigenmannia virescens						1												6						
21. Galeocharax humeralis*																								
22. Geophagus iporangensis*						1				2		6												<u> </u>
23. Gymnogeophagus sp.																	5							

		Inv	erno 20	12 (ago	sto)			Prim	avera 20)12 (out	ubro)			Vera	ão 2012	(dezem	nbro)			Ve	erão 201	13 (mar	ço)	
Espécies	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
24. Gymnotus inaequilabiatus																	1							
25. Hemiancistrus fuliginosus					2						2							3						
26. Hoplias australis						1						1												
27. Hoplias lacerdae		2	1				1	1	2	1		1	1		1			1						
28. Hoplias malabaricus		1								2		1				1						2		
29. Hypostomus spiniger*				1		1			2			1			1		1							
30. Hypostomus isbrueckeri	3	7			1	16	4	2	10	2	1	13	2		3	1		5	1		1		1	
31. Hypostomus luteus					5		1	1	4	2		1			2									
32. Hypostomus roseopunctatus																	1							
33. Iheringichthys labrosus								1			2													1
34. Leporinus amae	30	1				4							1					1	3					
35. Leporinus obtusidens			1																				1	
36. Loricariichthys anus						1		1	6						1						3			
37. Odonthestes yucuman*		7			4	1								1										
38. Oligosarcus brevioris					7		2				5						2						4	
39. Oligosarcus jenynsii																								
40. Oligosarcus oligolepis		3			9		2			1		1					1		1		1		1	
41. Pachyurus bonariensis												3					7							
42. Paraloricaria vetula					3																			
43. Pimelodella australis																	1							
44 Pimelodus atrobrunneus					1												1	3						
45. Pimelodus maculatus		1			2												4							
46. Prochilodus lineatus					2																			
47. Rhamdella longiuscula																	1	1						

		Inv	erno 20	12 (agos	sto)			Prima	avera 20)12 (out	ubro)			Ver	ão 2012	(dezen	ibro)			Ve	rão 201	3 (mar	ço)	
Espécies	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
48. Rhamdia sp.		1	1		3	1			1		3	1	1		1									
49. Rineloricaria zaina					1																			
50. Salminus brasiliensis					6						4						3							
51. Schizodon nasutus		1		2	2	7		4	2	1	2	4		1		3	7	4					4	
52. Serrasalmus maculatus												8				1								1
53. Steindachneridion scriptum												1												
54. Steindachenerina brevipinna	1										26				6		57	6			6			1
55.lctalurus punctatus																								
56. Hemiancistrus votouro																								
Riqueza de espécies	4	15	4	4	19	13	7	7	7	9	15	13	7	4	9	8	27	16	4		6	1	10	4
Ìndice de Diversidade	0,23	1,03	0,60	0,37	1,11	0,87	0,93	0,76	0,86	0,97	0,78	0,75	0,82	0,57	0,55	0,48	1,02	1,05	0,60		0.62	0,0	0,79	0,60
Ìndice de Equitabilidade	0,39	0,88	1,00	0,61	0,87	0,78	0,78	0,84	0,84	0,92	0,92	0,84	0,97	0,96	0,58	0,53	0,71	0,87	0,89		0.80	-1	0,79	0,60
Abundância total	35	33	4	15	87	42	13	11	27	13	118	62	9	5	46	35	276	54	6		21	2	65	4

Tabela 13 (continuação). Espécies coletadas nos rios Passo Fundo e Erechim, área de influência daUHE Monjolinho- Pós-enchimento.

Espécies		Out	tono 20)13 (ju	nho)			Inve	rno 20	13 (ag	osto)			Prima	vera 20	015 (se	tembro))		Ve	rão 201	l6 (Mai	ço)	
Especies	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
01. Acestrorhynchus pantaneiro		2				1			3	1		8		3	28		3			14	30	15		
02. Apareiodon affinis																								
03. Astyanax lacustris*					1						1			1	2		7		1					
04. Astyanax sp. 1. (op)					4			2			25						1							
05. Astyanax sp. 2. (og)	1		1				4	10			12		4						8					
06. Astyanax sp. 3. (bl)					33																			
07. Astyanax sp. 4. (nv)					2						2													

		Out	tono 20	013 (ju	nho)			Inve	rno 20	13 (ag	osto)			Prima	vera 2	015 (se	tembro)			Ve	rão 20	16 (Mai	ço)	
Espécies	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
08. Australoheros forquilha																								
09. Bryconamericus iheringii											5													
10. Bryconamericus patriciae																								
11. Crenicichla celidochilus		1						2				1								1				2
12. Crenicichla jurubi																								
13. Crenicichla minuano								1							1									
14. Crenicichla missioneira								1																
15. Crenicichla tendybaguassu												1												
16. Ctenopharingodon idella								1																
17. Cyphocharax voga											2	3			1							1		
18. Cyprinius carpio																								
19. Eigenmannia trilineata																								
20. Eigenmannia virescens																								
21. Galeocharax humeralis*																							9	
22. Geophagus iporangensis*											1	1		1		1		2						
23. Gymnogeophagus sp.									1															
24. Gymnotus inaequilabiatus			1																			1		
25. Hemiancistrus fuliginosus																								
26. Hoplias australis																								
27. Hoplias lacerdae			1	4		1			1			2				3		1	1					
28. Hoplias malabaricus				1					1	3		3												
29. Hypostomus spiniger*				1		1		1			4	7			1		1	1			1			1
30. Hypostomus isbrueckeri		1		1			4		3	3	2	13		5		3	7	10						8
31. Hypostomus luteus											2					1	1							
32. Hypostomus roseopunctatus																								
33. Iheringichthys labrosus																	13							
34. Leporinus amae	2						7					2	6											
35. Leporinus obtusidens																								
36. Loricariichthys anus								3	1			5		6	2			2			7			
37. Odonthestes yucuman*					1			2			7													
38. Oligosarcus brevioris	1					1					4	1	4		1		4		8	5				

- / /		Out	ono 20)13 (ju	nho)			Inve	rno 20	13 (ag	osto)			Prima	vera 20	015 (se	tembro))		Ve	rão 201	6 (Mar	ço)	
Espécies	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
39. Oligosarcus jenynsii														1	2			6						
40. Oligosarcus oligolepis	1		1				2	6			17	1												
41. Pachyurus bonariensis																								
42. Paraloricaria vetula																								
43. Pimelodella australis											1													
44. Pimelodus atrobrunneus											1			2										8
45. Pimelodus maculatus											1						1							
46. Prochilodus lineatus														1			4							
47. Rhamdella longiuscula																								
48. Rhamdia sp.	1							6	3		1	5		2		2								
49. Rineloricaria zaina						1																		
50. Salminus brasiliensis											1													
51. Schizodon nasutus		1						11	9	6		7		6	2	7	20	4		1		1		
52. Serrasalmus maculatus				1								1											1	
53 Steindachneridion scriptum																								
54. Steindachenerina brevipinna	1		1				4	10	1			6					4				27			
55.Ictalurus punctatus																								
56.Hemiancistrus votouro																								
Riqueza de espécies	6	4	5	5	5	5	5	13	9	4	19	16	3	10	9	6	12	7	4	4	4	4	2	4
Ìndice de Diversidade	0.75	0.57	0.69	0.60	0.31	0.69	0.66	0.96	0.80	0.53	1.00	1.07	0.46	0.98	0.52	0.67	0.89	0.71	0.45	0.39	0.44	0.27	0.14	0.48
Ìndice de Equitabilidade	0.97	0.96	1.00	0.86	0.45	1.00	0.95	0.86	0.84	0.88	0.78	0.89	0.98	0,98	0.55	0.87	0.82	0.84	0.75	0.65	0.74	0.45	0.46	0.80
Abundância total	7	5	5	8	41	5	21	56	23	13	90	66	14	28	40	17	66	26	18	21	65	18	10	19

Tabela 13 (continuação). Espécies coletadas nos rios Passo Fundo e Erechim, área de influência daUHE Monjolinho- pós-enchimento.

Poutsta		C	outono 20)16 (junh	0)			V	erão 201	7 (janeir	0)			0	utono 20	17 (Junh	10)	
Espécies	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
01. Acestrorhynchus pantaneiro				1					3	1	1				9		3	1
02. Apareiodon affinis					2						18							
03. Astyanax lacustris*					2	1				1	3	1			6			
04. Astyanax sp.1 (op)				1							10							
05. Astyanax sp.2 (og)			1														4	
06. Astyanax sp.3 (bl)											43							
07. Astyanax sp.4 (nv)																		
08. Australoheros forquilha																		
09. Bryconamericus iheringii											1							
10. Bryconamericus patriciae																		
11. Crenicichla celidochilus											7							
12. Crenicichla jurubi																		
13. Crenicichla minuano																		
14. Crenicichla missioneira										2	7	1						
15. Crenicichla tendybaguassu																		
16. Ctenopharingodon idella																		
17. Cyphocharax voga														3	15			34
18. Cyprinius carpio																		
19. Eigenmannia trilineata																		
20. Eigenmannia virescens																		
21. Galeocharax humeralis*											2							
22. Geophagus iporangensis*			1															
23. Gymnogeophagus sp.																		
24. Gymnotus inaequilabiatus																		
25. Hemiancistrus fuliginosus													1					
26. Hoplias australis																		
27. Hoplias lacerdae						1				2		1				1		
28. Hoplias malabaricus																		
29. Hypostomus spiniger*																		
30. Hypostomus isbrueckeri		1	4		6	1						3		1			1	
31. Hypostomus luteus											1							
32. Hypostomus roseopunctatus																		
33. Iheringichthys labrosus											1							
34. Leporinus amae																		
35. Leporinus obtusidens																		

Forfates		С	outono 20)16 (junh	0)			V	erão 201	I7 (janeir	0)			0	utono 20	17 (Junh	10)	
Espécies	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
36. Loricariichthys anus						1								1				
37. Odonthestes yucuman*														3	1			2
38. Oligosarcus brevioris						2								2	1			3
39. Oligosarcus jenynsii		1		1	1	1		2						3				
40. Oligosarcus oligolepis														17	13		7	23
41. Pachyurus bonariensis																		
42. Paraloricaria vetula																		
43. Pimelodella australis										1								
44 Pimelodus atrobrunneus																		
45. Pimelodus maculatus																		
46. Prochilodus lineatus											2							
47. Rhamdella longiuscula																		
48. Rhamdia sp.			1			1								2		1		4
49. Rineloricaria zaina																		
50. Salminus brasiliensis																		
51. Schizodon nasutus								4	1	3	18	2		7			2	3
52. Serrasalmus maculatus																		
53. Steindachneridion scriptum																		
54. Steindachenerina brevipinna			6	1		1					7	5		1				
55.Ictalurus punctatus														1				
56. Hemiancistrus votouro																		
Riqueza de espécies		2	5	4	4	8		2	2	6	15	6	1	11	6	2	5	8
Indice de Diversidade		1	1,31	1,38	1,16	2		0.64	0.56	1.70	2.12	1.59	0	1.89	1.48	0.69	1.43	1.36
Ìndice de Equitabilidade		1	0,81	1	0,84	0,98		0.92	0.81	0.95	0.78	0.89	0	0.79	0.82	1.00	0.88	0.65
Abundância total		2	13	4	11	9		6	4	10	128	13	1	41	45	2	17	71

Tabela 13 (continuação). Espécies coletadas nos rios Passo Fundo e Erechim, área de influência daUHE Monjolinho-pós-enchimento.

_ /.		Prim	navera 20)17 (outu	ıbro)				Outono 20	018 (abri	I)			Prim	avera 20	18 (outu	oro)	
Espécies	Pt1	Pt2	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
01. Acestrorhynchus pantaneiro		4				10	4		30	2					4	8		
02. Apareiodon affinis							1										1	
03. Astyanax lacustris*		1					9						1					
04. Astyanax sp.1 (op)							1										5	
05. Astyanax sp.2 (og)									1	1	1		8			1	21	
06. Astyanax sp.3 (bl)																		
07. Astyanax sp.4 (nv)																		
08. Australoheros forquilha																		
09. Bryconamericus iheringii																		
10. Bryconamericus patriciae																		
11. Crenicichla celidochilus							2									1		
12. Crenicichla jurubi																		
13. Crenicichla minuano						2											3	
14. Crenicichla missioneira				1													12	
15. Crenicichla tendybaguassu																1		
16. Ctenopharingodon idella																		
17. Cyphocharax voga		1		2					1	1					1			
18. Cyprinius carpio																		
19. Eigenmannia trilineata																		
20. Eigenmannia virescens				5								2						1
21. Galeocharax humeralis*																		
22. Geophagus iporangensis*	1					1						1				1		
23. Gymnogeophagus sp.												1						
24. Gymnotus inaequilabiatus																		
25. Hemiancistrus fuliginosus	3		1															
26. Hoplias australis																		
27. Hoplias lacerdae	3											1						
28. Hoplias malabaricus						2						1				8		
29. Hypostomus spiniger*			1		2											1	12	
30. Hypostomus isbrueckeri	9	6	3	2				7		1		7				2	5	2
31. Hypostomus luteus																		
32. Hypostomus roseopunctatus			1					1	1	1					1			<u> </u>
33. Iheringichthys labrosus		1	1	1	1		1	1	1	1		9			1			3
34. Leporinus amae			1	1		1		1	1	1		3			1			
35. Leporinus obtusidens			1					1	1	1					1			<u> </u>
36. Loricariichthys anus			1		15		1			2		5				3	4	20

Espécies			avera 20	•					Outono 20	_ \					avera 20			
·	Pt1	Pt2	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
37. Odonthestes yucuman*		3		1			1				2				2		3	
38. Oligosarcus brevioris							1		6	1	1	3	2	1	1		2	
39. Oligosarcus jenynsii				5														
40. Oligosarcus oligolepis		6		5					22	1		1		5	3			
41. Pachyurus bonariensis																		
42. Paraloricaria vetula																		
43. Pimelodella australis																		
44 Pimelodus atrobrunneus																		
45. Pimelodus maculatus				2			1											
46. Prochilodus lineatus							1										3	
47. Rhamdella longiuscula												1						
48. Rhamdia sp.		1			1									2		1	2	
49. Rineloricaria zaina																		
50. Salminus brasiliensis																	1	
51. Schizodon nasutus		5					16	8				23				2	6	4
52. Serrasalmus maculatus							1											
53. Steindachneridion scriptum																		
54. Steindachenerina brevipinna				1		1	3		4	3		4				2		
55. Ictalurus punctatus																		
56.Hemiancistrus votouro	1		1										3					
57. Ancistrus taunayi																	1	
Riqueza de espécies	5	9	4	11	4	6	14	2	6	8	3	14	4	3	5	12	15	5
Indice de Diversidade	1.28	1.96	1.24	2.17	0.73	1.31	2	0.69	1.24	1.97	1.04	2.00	1.11	0.9	1.46	2.12	2.31	1.06
Ìndice de Equitabilidade	0.79	0.89	0.89	0.90	0.52	0.73	0.76	0.99	0.69	0.95	0.94	0.78	0.8	0.81	0.91	0.85	0.85	0.66
Abundância total	17	28	6	26	19	17	43	15	64	12	4	62	14	8	11	31	81	30

Tabela 13 (continuação). Espécies coletadas nos rios Passo Fundo e Erechim, área de influência daUHE Monjolinho-pós-enchimento.

Fonésias		Prim	navera 20)17 (outu	ıbro)				Outono 2	018 (abri	il)			Prim	avera 20	18 (outu	bro)	
Espécies	Pt1	Pt2	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
01. Acestrorhynchus pantaneiro		4				10	4		30	2					4	8		
02. Apareiodon affinis							1										1	
03. Astyanax lacustris*		1					9						1					
04. Astyanax sp.1 (op)							1										5	
05. Astyanax sp.2 (og)									1	1	1		8			1	21	
06. Astyanax sp.3 (bl)																		1
07. Astyanax sp.4 (nv)																		1
08. Australoheros forquilha																		1
09. Bryconamericus iheringii																		1
10. Bryconamericus patriciae																		1
11. Crenicichla celidochilus							2									1		
12. Crenicichla jurubi																		
13. Crenicichla minuano						2											3	
14. Crenicichla missioneira				1													12	
15. Crenicichla tendybaguassu																1		
16. Ctenopharingodon idella																		
17. Cyphocharax voga		1		2					1	1					1			
18. Cyprinius carpio																		
19. Eigenmannia trilineata																		
20. Eigenmannia virescens				5								2						1
21. Galeocharax humeralis*																		
22. Geophagus iporangensis*	1					1						1				1		
23. Gymnogeophagus sp.												1						
24. Gymnotus inaequilabiatus																		
25. Hemiancistrus fuliginosus	3		1															
26. Hoplias australis																		
27. Hoplias lacerdae	3											1						
28. Hoplias malabaricus						2						1				8		
29. Hypostomus spiniger*			1		2											1	12	
30. Hypostomus isbrueckeri	9	6	3	2				7		1		7				2	5	2
31. Hypostomus luteus									1				1		1	1		
32. Hypostomus roseopunctatus		1	1		l	1	1		1	1		1	1		1	1	1	

Espécies)17 (outu					Outono 20	(/				avera 20		/	
·	Pt1	Pt2	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
33. Iheringichthys labrosus		1		1	1		1					9						3
34. Leporinus amae				1		1						3						
35. Leporinus obtusidens																		
36. Loricariichthys anus					15		1			2		5				3	4	20
37. Odonthestes yucuman*		3		1			1				2				2		3	
38. Oligosarcus brevioris							1		6	1	1	3	2	1	1		2	
39. Oligosarcus jenynsii				5														
40. Oligosarcus oligolepis		6		5					22	1		1		5	3			
41. Pachyurus bonariensis																		
42. Paraloricaria vetula																		
43. Pimelodella australis																		
44 Pimelodus atrobrunneus																		
45. Pimelodus maculatus				2			1											
46. Prochilodus lineatus							1										3	
47. Rhamdella longiuscula												1						
48. Rhamdia sp.		1			1									2		1	2	
49. Rineloricaria zaina																		
50. Salminus brasiliensis																	1	
51. Schizodon nasutus		5					16	8				23				2	6	4
52. Serrasalmus maculatus							1											
53. Steindachneridion scriptum																		
54. Steindachenerina brevipinna				1		1	3		4	3		4				2		
55. Ictalurus punctatus																		
56.Hemiancistrus votouro	1		1										3					
57. Ancistrus taunayi																	1	
Riqueza de espécies	5	9	4	11	4	6	14	2	6	8	3	14	4	3	5	12	15	5
Ìndice de Diversidade	1.28	1.96	1.24	2.17	0.73	1.31	2	0.69	1.24	1.97	1.04	2.00	1.11	0.9	1.46	2.12	2.31	1.06
Îndice de Equitabilidade	0.79	0.89	0.89	0.90	0.52	0.73	0.76	0.99	0.69	0.95	0.94	0.78	0.8	0.81	0.91	0.85	0.85	0.66
Abundância total	17	28	6	26	19	17	43	15	64	12	4	62	14	8	11	31	81	30

Tabela 13 (continuação). Espécies coletadas nos rios Passo Fundo e Erechim, área de influência daUHE Monjolinho-pós-enchimento.

Espécies		Ou	tono 20	019 (ab	ril)			Primav	era 20	19 (nov	embro))		Ou	itono 2	020 (m	aio)			F	rimave	ra 202	0	
·	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
01. Acestrorhynchus pantaneiro			2	9					2	9						2			1			8	1	25
02. Apareiodon affinis																						1	8	
03. Astyanax lacustris*			1		1				1		1									1			7	
04. Astyanax sp.1 (op)														2						1			12	
05. Astyanax sp.2 (og)						4						4	1	3						1	1	1	12	
06. Astyanax sp.3 (bl)														1									2	
07. Astyanax sp.4 (nv)																								
08. Australoheros forquilha																								
09. Bryconamericus iheringii																								
10. Bryconamericus patriciae																								
11. Crenicichla celidochilus																						1		
12. Crenicichla jurubi																								
13. Crenicichla minuano																	1					1		
14. Crenicichla missioneira					1						1			1	1							1	1	3
15. Crenicichla tendybaguassu													1										1	
16. Ctenopharingodon idella																								
17. Cyphocharax voga			10						10											1				
18. Cyprinius carpio																								
19. Eigenmannia trilineata																							1	1
20. Eigenmannia virescens																								
21. Galeocharax humeralis*																								
22. Geophagus iporangensis*																			1				2	
23. Gymnogeophagus sp.																								
24. Gymnotus inaequilabiatus																								
25. Hemiancistrus fuliginosus					1						1		3						39					
26. Hoplias australis																								
27. Hoplias lacerdae														1								1		
28. Hoplias malabaricus	1						1																	
29. Hypostomus spiniger*					2						2			4	2						1			
30. Hypostomus isbrueckeri	2	5			2		3	1			2		6	6			1	1	17			1		1
31. Hypostomus luteus	1				1		1				1								4					
32. Hypostomus roseopunctatus																								
33. Iheringichthys labrosus																				7		1	2	5
34. Leporinus amae													5											3

Fanásias		Ou	itono 20	19 (ab	ril)			Primav	era 20	19 (nov	/embro)		Ou	tono 2	020 (ma	aio)			F	rimave	era 202	0	
Espécies	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6
35. Leporinus obtusidens																								
36. Loricariichthys anus			13							9					8			9		2		2		13
37. Odonthestes yucuman*								2												7				
38. Oligosarcus brevioris													2											
39. Oligosarcus jenynsii																				2				
40. Oligosarcus oligolepis		18						1			3	4	1	6						4		1	4	
41. Pachyurus bonariensis																								
42. Paraloricaria vetula																								
43. Pimelodella australis																								
44 Pimelodus atrobrunneus					1															4				
45. Pimelodus maculatus											2													
46. Prochilodus lineatus					1																			
47. Rhamdella longiuscula													1											
48. Rhamdia sp.	1				1	1			1										1	1				
49. Rineloricaria zaina					1																			
50. Salminus brasiliensis					1																			
51. Schizodon nasutus		2		1	7					5	4			11		1		1		12		2	2	
52. Serrasalmus maculatus																								2
53. Steindachneridion scriptum																								
54. Steindachenerina brevipinna					1	1					16	1			1	1		3	3		7	4	16	
55. Ictalurus punctatus																								
56.Hemiancistrus votouro	1												4											
57. Ancistrus taunayi																								
58.Pimelodus absconditus					2																			
Riqueza de espécies	5	3	3	4	15	6	3	3	4	3	10	3	9	9	4	3	2	4	6	14	2	13	14	9
Ìndice de Diversidade	1.56	0.76	0.48	1.07	2.16	1.6 7	0.95	1.04	0.89	1.06	1.75	0.96	1.96	1.89	0.98	1.04	0.69	0.99	1.26	2.27	0.69	2.15	2.27	1.70
Ìndice de Equitabilidade	0.96	0.69	0.44	0.77	0.79	0.9	0.86	0.94	0.64	0.97	0.76	0.87	0.89	0.86	0.70	0.94	1	0.71	0.58	0.69	1	0.66	0.69	0.61
Abundância total	6	25	15	8	45	9	5	4	14	23	33	9	24	35	12	4	2	14	77	47	2	28	59	69

ANOTAÇÃO DE RESPONSABILIDADE TÉCNICA - ART

CONSI	ELHO FEDERAL	,		co Federal GIONAL DI	E BIOLO	GIA (3ª REGIÃO
ANOTA	ÇÃO DE RESP	ONSABIL	.IDAI	DE TÉCNIO	CA - AR	T	1-ART Nº: 2020/03634
		CO	NTRAT	ADO			
2.Nome: LUCAS CA	STELLO COSTA DE FRIES				3.Registro no	CRBio:	058586/03-D
4.CPF: 009.816.460		ucas.defries@yah	noo.com.l	or			el: (51)3508-5297
	ERLY MONTEIRO 90			<u>* </u>	8.Compl.: 20		0 (01)0000 0107
9.Bairro: JARDIM I	•	: PORTO ALEGRE	:		11.UF: RS		EP: 91225-150
			NTRAT	ANTE			
13.Nome: ABG FN0	GENHARIA MEIO AMBIEN						
14.Registro Profissi			CPF / CGC	: / CNPJ: 93.390.2	43/0001-64		
	TOR BARROS CASSAL 180		,	.,			
17.Compl.:		3.Bairro: FLORES	TA	19.0	idade: PORT	O ALEGR	RE
· · · · · · · · · · · · · · · · · · ·		2.E-mail/Site:					
			VIDADI	E PROFISSIO	NAL		
	Prestação de serviço cada(s) : Realização de co	·			ÁRFA DE INFI	LIÊNCTA	DA UHE MONJOLINHO,
), BACIA HIDROGRÁFICA	ALTO RIO URUGI	UAI.	ATRESENTE NA F	AINLA DE INIT	OLIVOIA	TOA ONE MONDOLINIO,
	alização do Trabalho: NC						26.UF: RS
27.Forma de partic	ipação: INDIVIDUAL		28.Perfil	da equipe:			•
29.Área do Conhec	imento: Ecologia; Zoolog	jia;	30.Camp	o de Atuação: Me	io Ambiente		
31.Descrição sumá PASSO FUNDO E R	IO ERECHIM, BACIA HIDI	ROGRÁFICA ALTO					MONJOLINHO, RIO
32.Valor: R\$ 10.00	.,	de horas: 300		34.Início: FE\	V/2020	35.Tér	
	36. AS	SSINATURAS	6			37. L	OGO DO CRBio
	Declaro serem verda	adeiras as infor	mações	acima			
	Data: 20.03.2020			oata: 20.03.202	20	CF	200
Assinatur	a do Profissional	Assinati		mbo do Contratar		<u>Ct</u>	(BIO)-03
Lucs (L. C. de Tiris		ABG Enge	andre Bugir ocio-Diretor Inharia e Meio Ambie on 243/0001-64	1 ente	Con	orte terjonal de Didogla - 2º tergão
	AÇÃO DE BAIXA P	OK CONCLU	SAU	39. SOLICIT	AÇÃO DE	BAIX	A POR DISTRATO
	clusão do trabalho anotad ramos a devida BAIXA jur CRBio.						
		o Profissional		Data: / /	As	sinatura	do Profissional
Data: / /							
Data: / /	Assinatura e Carir	mbo do Contratan	nte	Data: / /	Assinatura e	e Carimb	o do Contratante

CERTIFICAÇÃO DIGITAL DE DOCUMENTOS NÚMERO DE CONTROLE: 1907.1221.1535.1535

OBS: A autenticidade deste documento deverá ser verificada no endereço eletrônico www.crbio03.gov.br

Recibo do Pagador

Nome do Pagador/CPF/CNPJ:

LUCAS CASTELLO COSTA DE FRIES Registro : 058586 CPF : 009.816.460-00 R DOUTOR DERLY MONTEIRO 90 202 JARDIM ITU SABARA

91225-150 PORTO ALEGRE RS

BANCO DO BRASIL | 001-9 |

00190.00009 02808.603704 00013.796172 1 82040000004964

	001-3					Tr. i
ocal de Pagamento ATÉ O VENCIMENT	O PAGAVELEN	I OLIAI OLIED BA	NCO			Vencimento 24 03 2020
	<u>, </u>	I QUALQULIT DA	NIVCO			24.03.2020
Iome do Beneficiário/CNP CONSELHO REGIONAL DE RUA CORONEL CORTE RE	BIOLOGIA DA 3ª RE					Agência/Código do Beneficiário 3798-2 / 106.058-
Data do Documento 04.03.2020	Número do Doci 058586	umento	Espécie Doc DS	Aceite N	Data do Processamento 04.03.2020	Nosso Número 28086037000013796
Jso do Banco	Carteira 17/067	Espécie Moeda R\$	Quantidade		Valor	(=) Valor do Documento R\$ 49,64
nstruções (Texto de resp	onsabilidade do bene	ficiário)			l	(-) Desconto/Abatimento
200066 TAXA DE A	RT ELETRÔNIC <i>A</i>	49,64 - ART N	0 2020/0363	34		(-) Outras Deduções
						(+) Mora/Multa
						(+) Outros Acrécimos

Autenticação Mecânica

BANCO DO BRASIL

001-9 |

00190.00009 02808.603704 00013.796172 1 82040000004964

ocal de Pagamento						Vencimento
ATÉ O VENCIMEN	TO, PAGAVEL E	M QUALQUER BA	ANCO			24.03.2020
Nome do Beneficiário/CN CONSELHO REGIONAL C RUA CORONEL CORTE R	E BIOLOGIA DA 3ª RE					Agência/Código do Beneficiário 3798-2 / 106.058-9
Data do Documento 04.03.2020	Número do Doc 058586	cumento	Espécie Doc DS	Aceite N	Data do Processamento 04.03.2020	Nosso Número 28086037000013796
Jso do Banco	Carteira 17/067	Espécie Moeda R\$	Quantidade		Valor	(=) Valor do Documento
	127,007	'				114 15/61
nstruções - Texto de res	,	eficiário				(-) Desconto/Abatimento
•	ponsabilidade do bene		lº 2020/0363	34		
•	ponsabilidade do bene		 • 2020/0363	34		(-) Desconto/Abatimento
nstruções - Texto de res	ponsabilidade do bene		 ° 2020/0363	34		(-) Desconto/Abatimento (-) Outras Deduções

LUCAS CASTELLO COSTA DE FRIES Registro: 058586 CPF: 009.816.460-00

R DOUTOR DERLY MONTEIRO 90 202 JARDIM ITU SABARA

91225-150 PORTO ALEGRE RS

Autenticação Mecânica

Ficha de Compensação